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Abstract Compared with departures, predicting the weather impact on arrival delays is more chal-
lenging because of possible non-linear, cascading effects, and higher uncertainty. Existing weather
impact studies are location-dependent and often neglect the impacts of dangerous phenomena. We
propose a data-driven model for severe weather impact quantification on airport arrival on-time
performance based on the Bayesian approach to address these issues. Our model considers the
impact of the dangerous phenomenon by evaluating the mean shift and is flexible enough to be
applied to different airports. Using two years’ worth of data (2017-2018) from the Hong Kong In-
ternational Airport, we studied over 55,000 local meteorological reports and analyzed over 430,000
arrival flights. Across all three key performance metrics considered, a non-linear relationship with
the weather score, akin to a phase transition, could be observed. This framework allows a compar-
ison between the sensitivity of each airport’s arrival performance metric towards severe weather.
Delay rate is the most sensitive metric, while cancellation rate is the least. For the impacts of
dangerous phenomena, cumulonimbus has the most significant impact on the delay rate. Shower
rainfall/cumulonimbus has a similar and vital impact on the mean arrival delay per hour. Because
of its potential applications in different airports, this framework can provide a deeper insight into
weather impact on air traffic networks.

1 Introduction
Air transportation has been a key driver of worldwide commercial connections and economic de-
velopment over recent decades. From 1980 to 2019, the number of carried passengers via air
transportation increased from 0.6 billion to 4.2 billion in an exponential trend. With this rapid
growth, concerns are growing over air traffic delays. According to the American Bureau of Trans-
portation Statistics (2021), between 2012 to 2019, the proportion of delayed arrivals in the U.S.
increased from 15.06% to 19.79%, while the proportion of delayed departures also grew from 14.67%
to 19.21%. Recently, the aviation industry has been severely battered by the COVID-19 pandemic.
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However, the industry has also demonstrated its resilience in the past by bouncing back and con-
tinuing its overall upward trend after incidents such as the terrorist attacks in 2001, the war in
Afghanistan that broke out in 2001, and the outbreak of severe acute respiratory syndrome (SARS)
in 2003 (Mason, 2005). Recent numbers seem to agree with this propensity. In December 2021,
while the revenue passenger kilometers (RPK) was still down by 45.1% compared with the same
month in 2019, it was a notable improvement from March 2021, where the RPK was 74.7% lower
than that of 2019 (ICAO, 2022). Therefore, despite the current downturn, addressing air traffic de-
lays is still important and relevant in the long term, since air transportation is expected to rebound
and continue its upward trend within the next few years.

This research is focused on studying the impacts of weather conditions on airport arrival on-time
performance. Between 2009 and 2019, 57.83% of the American National Aviation System (NAS)
delays were caused by adverse weather (Bureau of Transportation Statistics, 2021). In particular,
we focus on aircraft arrival in the terminal control area, also called the terminal maneuvering
area (TMA), which is regarded as the bottleneck of air traffic management (ATM) because of
its high traffic density and complexity (Kistan et al., 2017; Spinardi, 2015; Erzberger and Lee,
1972). Aircraft arrival and departure delays inside the TMA attributable to convective weather
conditions can cause economic losses owing to reduced performances. During arrivals, for instance,
the extra maneuvering required due to weather conditions burns more fuel, which in turn increases
the operating costs for airlines. Borsky and Unterberger (2019) investigated the weather shock
impact on departure delays in the U.S., and the results quantified the general impact of weather
conditions on aircraft delays and social costs. Rain, ice, snow, and hail increase the amount of
time that aircraft spend on runways. Thunderstorms will restrict airspace capacity and produce
congestion, while clouds may obstruct pilot’s visibility. Hence, local weather impact quantification
on airport/terminal area performance becomes increasingly important for future ATM systems.
In this research, we will focus our attention on the arrival delays because of its higher level of
uncertainty compared with departure delays.

Weather-impact study is location-dependent, such that the significant weather influence factors
differ for different climate conditions in different geographical locations. Early researches on local
aviation weather impact extracted weather features affecting a particular airport (e.g., snowstorms,
thunderstorms, and surface winds) which were then correlated with flight delays (McCarthy et al.,
1982; Robinson, 1989; Allan et al., 2001). Recently, the investigation of severe local weather impact
on ATM has become more diverse. Some studies focused on the flight re-routing problem under
specific weather conditions (Krozel et al., 2007; McCrea et al., 2008; Pfeil and Balakrishnan, 2012),
which employed different weather data sources and different methodologies to re-arrange the default
flight route. Advanced data-driven models have been applied to study weather impacts on flight
trajectory prediction for specific origin–destination pairs (Pang et al., 2021, 2019; Pang and Liu,
2020; Zhao et al., 2019). Some other studies focused on quantifying the impact of hazardous weather
on airspace capacity (Song et al., 2009; Buxi and Hansen, 2011), by investigating the impact of
individual weather features on the airspace arrival/departure rate. The combined impact of the
variety of weather features is complex, which motivated studies to classify the type of weather based
on their impact on air traffic (Grabbe et al., 2014). Later on, another study related to weather
impact quantification based on machine learning methodology was also constructed (Schultz et al.,
2021). Using a combination of recurrent and convolutional neural networks, their model could
perform predictive weather-dependent airport performance classification across six hours, focusing
on London Gatwick Airport (LGW). de Oliveira et al. (2021) analyzed the weather impact on
the delayed arrival occurrence for Brazilian domestic air traffic system using logistic regression.
Rodriguez-Sanz et al. (2021) studied the local weather impact on airport arrival performance at
Adolfo Suárez Madrid-Barajas airport (MAD) by applying the Bayesian network model. The recent
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research trend of weather impact quantification provides a growing potential for further follow-up
research.

Such a local study, however, has not been performed for the Hong Kong International Airport
(HKIA), which is one of the world’s major transportation hubs, both in passenger numbers and
cargo volumes. Besides its geographical location, its coastal and subtropical climate makes local
aviation weather in Hong Kong unique. As an example, low-level wind shear and turbulence are
known hazards at HKIA (Shun and Chan, 2008; Hon and Chan, 2022), which in severe instances
can cause considerable traffic disruption (Chan and Hon, 2016). To the best of our knowledge, there
have not been any studies that systematically investigate and quantify the weather impact on ter-
minal area traffic pertaining to HKIA. Furthermore, existing studies do not sufficiently analyze and
interpret the impacts of dangerous weather phenomena. The official weather impact research doc-
ument of EUROCONTROL even stated that the real impacts of dangerous phenomena on airport
operations are nearly impossible to predict (EUROCONTROL, 2011). Some works only covered a
narrower range of weather scores (Schultz et al., 2018), or barely described the influence of danger-
ous phenomena (Reitmann et al., 2019; Schultz et al., 2021; Rodriguez-Sanz et al., 2021). A linear
model has previously been used to describe weather impact on airport traffic performance (Schultz
et al., 2018), which might not be sufficient to describe the non-linear relationship as revealed by
data. Lastly, weather phenomena are dynamic in nature owing to several factors, such as the con-
stant changes of global climate (Easterling et al., 2000), which will have an impact on aviation
activities (Ryley et al., 2020). Therefore, it is imperative to derive a weather impact model that is
adaptable to future changes.

In this paper, we aim to establish a quantitative relationship between weather conditions, in-
cluding dangerous weather phenomena, and airport arrival on-time performance at HKIA. Instead
of relying on black-box models, which lack interpretability (Rudin, 2019), we derive the explanatory
model based on a growth function that can emulate the trend of weather impacts more realistically.
The model parameters are derived based on the Bayesian approach, to allow for model updating
when newly-observed data are available. As such, we can ensure that the model remains relevant
albeit some weather changes due to, say, climate change, by updating the parameters as needed.

This paper commences with a description of the proposed approach, which includes airport
arrival on-time performance metrics, weather data, and preliminary data analysis in Section 2.
The key components for our methodologies are established in Section 3. Section 4 presents the
detailed results and Section 5 briefly summarizes the work of this paper.

2 Proposed approach
The proposed framework is illustrated in Fig. 1. The pink-colored blocks refer to data processing and
the red-framed blocks contain the analysis results, including (1) explanatory models describing the
relationship between weather conditions and airport arrival on-time performance (with uncertainty
representation), (2) traffic metric sensitivity, and (3) dangerous phenomenon impact quantification.

This analysis requires both arrival flight information data and weather data pertaining to HKIA,
where we use data from 2017 to 2018. For arrival flight information, there are 214,952 records
from 2017 and 218,728 records from 2018. From the raw air transportation data, we derive the
corresponding airport arrival on-time performance metrics, as described in Section 2.1. For weather
data, we use the weather scores derived based on Meteorological Aerodrome Reports (METAR)
data, which is one of the most commonly used data sources for weather impact studies (see, for
instance, Rodriguez-Sanz et al., 2021; Murça, 2021; Lemetti et al., 2020; Schultz et al., 2018, 2021).
The total number of raw METAR code data used in this study is 55,313. We use the Air Traffic
Management Airport Performance (ATMAP) weather algorithm, developed by EUROCONTROL
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Figure 1: Schematic flowchart for Bayesian-based weather impact quantification.

(2011), to assign quantitative weather scores for different weather conditions. This algorithm has
been used to assess the weather impact on aircraft performance in several works. Schultz et al.
(2018) investigated the weather impact on European flights by analyzing 20.5 million flights in 2013.
Based on this work, Reitmann et al. (2019) developed an ATMAP 2.0 algorithm for weather impact
quantification, using unsupervised learning for clustering and supervised learning for classification.
The METAR data and ATMAP algorithm will be further explained in Section 2.2, followed by a
preliminary data analysis in Section 2.3.

As shown in Fig. 1, we implement the Bayesian approach to infer the parameters for the derived
explanatory models based on data. Not only can the Bayesian approach quantify and characterize
the output uncertainty, it can also make the models adaptable to future changes, by deriving new
posteriors in the presence of newly-observed data. This will be further explained in Section 3.

Existing weather score calculation methods are insufficient to explain the impacts of dangerous
phenomena on airport arrival on-time performance, as will be further elaborated in Section 2.3.
As such, we propose to separate the analysis with and without dangerous phenomena. Once the
respective models are derived, we use mean shift assessment to investigate the impact of dangerous
phenomena. By applying this approach, we can address the limitations of some existing studies,
which mostly excluded the influence of dangerous phenomena (Schultz et al., 2018; Reitmann et al.,
2019; Schultz et al., 2021; Rodriguez-Sanz et al., 2021).

This quantification is aligned with ongoing efforts to integrate weather information into the new
generation of ATM systems. The International Civil Aviation Organization (ICAO) has promoted
closer integration of meteorological and air traffic information (“MET-ATM integration”) in the
Aviation System Block Upgrade (ASBU), which sets stage goals for every five years (ICAO, 2019).
In Europe, the EUROCONTROL pursues a similar initiative under The Single European Sky ATM
Research (SESAR) programme. Furthermore, quantifying the weather impact will help air traffic
controllers (ATC) at the strategic (as early as a year before) and pre-tactical (as early as a week
before) stages of flight planning and provide more accurate weather constraints for scheduling
aircraft arrivals.

2.1 Airport arrival on-time performance metrics
The Federal Aviation Administration (FAA) categorizes flight delays into arrival/departure delay,
taxi-in/out delay, and en-route delay. Arrival delay, which is the focus of this study, is typically
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hard to predict (Schultz et al., 2021). While there is already a large body of literature on aircraft
delays, gaps still remain in the terminal arrival delay studies. Despite optimized schedules, flights
might experience prolonged delays in the terminal area as they approach an airport to land, which is
often caused by weather conditions. At this point, departure scheduling and flight rerouting are no
longer possible. The vectoring and holding maneuvers that the flights need to go through under this
situation may incur additional fuel burn and noise impacts, which are undesirable. Furthermore,
adverse weather impacts on arrival delays are found to have snowball effects on subsequent flights,
even after the weather has returned to normal (Lui et al., 2020a). Therefore, quantifying weather
impact on arrival on-time performance contributes to arrival delay investigation and further enables
deriving appropriate mitigation strategies.

Airport arrival on-time performance is assessed based on recorded flight schedule data. Such
data have been frequently used in air traffic research, including operation analysis benchmark-
ing (Gopalakrishnan et al., 2021), delay-pattern analysis (Sternberg et al., 2016), and traffic delay
prediction (Rebollo and Balakrishnan, 2014). Recorded flight data reveal temporal patterns due to
night flying regulations (Lui et al., 2020a,b). Fig. 2 illustrates the hourly variations of scheduled
arrivals at HKIA representing air traffic activities, based on one-month’s data in May 2019 (Lui
et al., 2020a). As shown in this figure, the peak hourly arrival rates occur with 30 to 36 flights.
This is consistent with the stated official maximum hourly movement capacity at HKIA of 68 flights
under the original two-runway system with segregated mode of operations (Lo, 2015). Fig. 2 also
reveals a significant reduction in air traffic between 10 pm and 9 am owing to night-time restric-
tions, which include any form of regulatory measures to limit aircraft noise emission exposure to
residents during night time, as well as runway closure programs at HKIA. As such, we only include
arrival time periods between 9 am and 10 pm (when air traffic activities are more significant) in
the current study. This time period is indicated by the shaded blue region in Fig. 2. In this study,
flights arriving earlier than the scheduled time are considered on-time, i.e., the actual and scheduled
arrival times are assumed to be the same. Arıkan et al. (2013) also applied the same assumption
in their air-travel infrastructure study.

For evaluation purposes, we define three airport arrival on-time performance metrics, which are
briefly described below.

Mean arrival delay per hour (µAD) This non-negative integer metric measures the average of
arrival delays of N flights within an hour, where aircraft arrival delay is defined as the
discrepancy between scheduled arrival time (SAT) and actual arrival time (AAT) for each
flight. This metric can be expressed as

µAD =
1

N

N∑

f=1

(AATf − SATf )
+, (1)

where f denotes the flight index and the superscript + indicates the non-negativity of the
metric. When a flight arrives ahead of the scheduled time, the negative AATf − SATf value
is converted to zero.

Cancellation rate per hour (RTc) This metric is defined as the ratio of the number of can-
cellations per hour with respect to the corresponding total number of flights, which can be
expressed as

RTc =
1

N

N∑

f=1

Cf , where Cf =

{
1 when flight f is cancelled

0 otherwise
, (2)
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Figure 2: Temporal patterns for arrival flights at HKIA

where Cf refers to the cancellation indicator for flight f . The flight cancellation is identified
when the actual arrival time information is missing in the flight information data set. An
empty timestamp string is returned when there is no recorded arrival for a particular scheduled
flight. Thus, when the actual arrival time returns an empty timestamp string, we assume that
the flight is cancelled.

Delay rate per hour (RTd) A flight is considered delayed when it fails to arrive within 15 min-
utes of the scheduled time (Mueller and Chatterji, 2002), following the definition from FAA
and the Bureau of Transportation Statistics (BTS). To define the metric, we use a delay in-
dicator Df , which is a Boolean variable that depends on the state of delay. The formulation
is similar to that of RTc, which is shown below

RTd =
1

N

N∑

f=1

Df , where Df =

{
1 when flight f is delayed

0 otherwise
. (3)

The values of RTc and RTd range between zero and one, since they are defined as proportions.
In this study, the value of µAD is normalized to be within the same range, for consistency in the
computation. The normalized mean arrival delay per hour is expressed below:

µ̃ =
µAD −min(µAD)

max(µAD)
, (4)

where µAD is the vector for µAD. This implementation allows the priors to be exchangeable among
three airport arrival traffic metrics, which will be elaborated in Section 3.1.

2.2 Weather information
In this section, we first describe the weather data (in METAR format) and the algorithm to quantify
the weather score. We then demonstrate the scoring algorithm with actual data and discuss the
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current limitations.

2.2.1 METAR data

METAR reports hourly weather conditions within a 16 km radius of an airport, though some
airports might provide data every half-hour, e.g., Frankfurt International Airport. An example of
raw METAR data, obtained from Navlost.eu, pertaining to HKIA at one timestamp is given in
Table 1.

Table 1: Example features from METAR data (15:30, Mar 30th, 2021, HKG).

Raw codes Features Values

VHHH ICAO airport
identifier

Hong Kong International Airport

300730Z
Date 30th (March)
Time 07:30 UTC

21013KT 170V230
Wind speed 13 knots

Wind direction 210◦, variable between 170◦ and
230◦

9999 Visibility 9,999 meters

FEW012 SCT030
Cloud type Few clouds; scattered cloud

Cloud location FEW: 1,200 ft AGL; SCT:
3,000 ft AGL

28/22
Temperature 28◦C
Dew point 22◦C

Q1005 Air pressure 1,005 hpa
NOSIG Remarks No significant change expected in

the next 2 hours

Raw METAR data provide a long string that contains diverse weather information for ATM
purposes including wind, moisture, visibility, etc. Airports, following the definition by the World
Meteorological Organization (WMO), provide weather information in this particular format, which
is considered interchangeable between airports. However, METAR contains some qualitative in-
formation that cannot be directly used in computational modeling and simulation. The ATMAP
weather algorithm is typically used to convert METAR data (both qualitative and quantitative)
into quantitative weather scores, which is described next.

2.2.2 ATMAP weather algorithm

The ATMAP weather algorithm can parse METAR weather information into a quantitative index,
which is referred to as the weather score (EUROCONTROL, 2011). The algorithm has been
commonly used in past aviation weather researches (Schultz et al., 2018; Reitmann et al., 2019;
Lemetti et al., 2020; Schultz et al., 2021; Rodriguez-Sanz et al., 2021). The algorithm categorizes
METAR weather information into five weather classes, namely visibility, dangerous phenomenon,
freeze condition, precipitation, and wind condition. Within each weather class, the severity is
indicated by the assigned weather score. The input features and corresponding weather score range
for each weather class are tabulated in Table 2. For further details of the score calculation, readers
are referred to the explanation provided in the relevant official document (EUROCONTROL, 2011).
The hourly total weather score at a specific airport is then obtained by summing up the scores of
these five classes.

As shown in Table 2, the scores assigned to dangerous phenomena are notably higher than those
of others (Reitmann et al., 2019). Dangerous phenomena are often excluded in existing studies, or
included with limited usage owing to this reason (Schultz et al., 2018; Reitmann et al., 2019; Schultz
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Table 2: Weather classes and their presentations

Weather class Input features Score range

Visibility and ceiling Visibility ≤ 1, 500 m, cloud type and cover [0,5]
Wind Wind speed > 15 knots, gust [0,5]

Precipitation Rain, (+/-) snow, etc. [0,3]
Freeze condition T ≤ 3◦C, dew point, precipitation [0,4]

Dangerous phenomenon TCU/CB, cloud cover, (+/-) phenomenon [0,30]

et al., 2021). In this research, we introduce a new hierarchical approach to enable quantifying the
impacts of dangerous phenomena on airport arrival on-time performance.

2.3 Preliminary data analysis
Before developing the solution methods, the arrival on-time performance and weather data are
analyzed and characterized, as shown below.

2.3.1 Location-dependent weather variation

The ATMAP weather algorithm is demonstrated with the daily weather scores pertaining to three
airports: Hong Kong (HKG), Frankfurt (FRA), and London (LHR), which are shown in Fig. 3.
Data from 2015 to 2020 were used to generate these figures, and each weather class (refer to Table 2)
is identified by a different color. The data from the three airports show some periodicity, each with
a different distributional pattern.

Among the three airports, HKG notably shows more divergent weather conditions, with a larger
distribution of ATMAP weather scores. This wider distribution indicates a larger contribution from
dangerous phenomenon, which is identified as the most dominant weather phenomenon in HKG,
followed by precipitation. At FRA and LHR, on the other hand, the freeze condition has the most
frequent occurrence among all weather classes. The visibility condition also appears to be dominant
at some instances at LHR. These observations highlight the uniqueness of weather conditions at
different airports, which calls for more location-specific studies to investigate weather impact on
airport arrival on-time performance. For HKG, in particular, the impacts of dangerous phenomena
cannot be neglected for a comprehensive weather impact analysis. Note that the data pertaining to
FRA and LHR are only used for weather score demonstration and discussion purposes. The aviation
weather impact study is focused on HKG, using local weather and arrival flight information data.

2.3.2 Weather impact characteristics for Hong Kong

In this section, we use boxplot to visualize and observe the correlation between weather score and
airport arrival on-time performance. Since the three airport arrival performance metrics exhibit
a similar pattern towards weather score, we only show the results for µAD for conciseness. Fig. 4
demonstrates the trends of µAD along with the weather score for two years (2017– 2018).

The distribution of data suggests that there are four main clusters of weather-µAD trend, which
are indicated by different hues. The contributions from different weather classes on weather score
calculation are shown as the single-stacked bar charts above each cluster. The percentage of data
that fall within each cluster is also indicated on the plot. Several scores (i.e., 8− 10 and 23) do not
have any data points associated with them, as indicated by the shaded gray area. The majority of
data (i.e., 92.3%) fall within the [0, 7] cluster, with around 80% of data having their weather scores
equal to zero. Outliers are observed especially in lower weather scores. These outliers correspond
to delays caused by factors other than weather, such as airspace restrictions, operation turnover,
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Figure 3: Daily average weather score for three hub airports from 2015 to 2020.
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Figure 4: The trend of µAD with respect to weather score and the corresponding score contributions
from five ATMAP weather classes.

runway occupation, etc.
Fig. 4 establishes two important characteristics of weather score trend for Hong Kong. First,

the µAD trend does not show any linear or monotonic relationship with weather score. The non-
monotonic trend can hardly reveal the real relationship between weather and airport arrival traffic
performance in HKG. This observation shows that the current ATMAP weather scoring algorithm
is not suitable for deriving the correlations between weather scores and airport arrival on-time
performance in Hong Kong, especially for weather scores higher than seven. Second, the single-
stacked bar charts show that dangerous phenomenon dominates the second, third, and fourth
clusters, whereas the wind condition and precipitation are more prevalent in the first cluster.
Referring to Table 2, the value range for “dangerous phenomenon” weather class is significantly
wider than those of other classes, with a maximum of 30 while all others are below five. Further
investigation reveals that 43.7% of the dangerous phenomenon occurrence in the fourth cluster is
due to thunderstorm conditions. While thunderstorm is not an ideal condition for taking off and
landing, it does not always cause severe disturbance in arrival air traffic in HKG, which explains
the low µAD values in this cluster.

Based on this observation, we adopt a hierarchical approach to interpret the overall weather
impacts on airport arrival on-time performance by separating data with and without dangerous
phenomenon. First, we quantify weather impacts considering all weather classes except for danger-
ous phenomenon, which is shown in Fig. 5. A single-stacked bar chart on the right hand side, similar
to those in Fig. 4, displays the contribution from each weather class. As shown in Fig. 5, excluding
dangerous phenomenon weather class in weather score calculation limits the score range to [0, 7].
Furthermore, µAD exhibits a monotonically increasing trend with respect to weather score, thereby
enabling the derivation of the correlation. Schultz et al. (2018) only considered this particular
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range of weather score, i.e., by excluding dangerous phenomenon, in their weather impact study on
European airports in 2018. Next, we assess the shift in airport arrival on-time performance metrics
caused by the presence of dangerous phenomena to quantify the overall weather impacts on arrival
performance. This approach is further discussed in Section 3.
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Figure 5: Weather score versus µAD, without dangerous phenomenon

2.3.3 Balanced sampling for data with long-tail features

Fig. 6 shows a histogram of weather scores (in logarithmic scale). A long-tail effect is noticeable here,
with the majority of observed data having low weather scores. This imbalanced dataset reflects, to
a certain extent, the local climatology and the relative occurrence frequency of those weather types
classified under the ATMAP score approach at HKIA. To alleviate bias, we perform undersampling
and oversampling on the imbalanced data set, which are commonly performed on data sets with
this characteristic (Krawczyk, 2016). In particular, we apply the adaptive synthetic (ADASYN)
method for oversampling and the cluster centroids algorithm for undersampling. ADASYN is
based on the K-nearest neighbors algorithm and has the advantage of not copying the minority of
data (He et al., 2008). The cluster centroids algorithm samples data by generating centroids based
on K-means (Likas et al., 2003). Specifically to the problem at hand, we undersample weather
scores that are less than three and oversample those above three to achieve a more balanced sample
distribution, as shown in Fig. 6. The green bars show the resulting balanced data sets. The same
oversampling and undersampling procedures are also applied to dangerous phenomenon data sets.

3 Methodology
In this section, we describe a new method to quantify the weather impacts on airport arrival on-time
performance pertaining to all weather conditions, including dangerous phenomena. As mentioned
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in Section 2.3.2, we separate the weather impact quantification pertaining to data with and without
dangerous phenomena. From past data, only thunderstorm, shower, and cumulonimbus (among
other dangerous phenomenon types) are commonly observed in Hong Kong. Shower refers to
intense precipitation and cumulonimbus refers to dense, towering vertical cloud (EUROCONTROL,
2011). Although interactions might occur among dangerous phenomena, e.g., thunderstorms and
cumulonimbus typically appear together, we assume that dangerous phenomenon indicators are
mutually independent in this study. This assumption allows us to simplify the problem at the
model development stage. As such, we have four data sets in our study, one for data without any
dangerous phenomena, and one for each of the three dangerous phenomena considered.

An explanatory model is then derived for each combination of data set (indexed with i) and
on-time performance metric (indexed with m). This model can generally be expressed as

yi,m = M (x |θi,m ) + Pi,m, (5)

where x and y denote the weather score and airport arrival on-time performance (i.e., µ̃, RTc, or
RTd), respectively, and P represents the stochastic component, representing uncertainty. M is the
deterministic mean trend of airport arrival performance metrics with respect to weather score, and
the vector θ contains the parameters of the deterministic model, which are also referred to as the
local parameters. With four data sets and three on-time performance metrics, we have 12 models
in total. The data distribution around the mean value at each weather score is represented by a
probability distribution function (PDF). The model formulation shown in Eq. (5) requires assuming
the same distribution type for each weather score. Hence, for generality, the Gaussian distribution,
which is the most commonly used distribution type in statistics (Murphy, 2007), is selected for
model derivation purposes. With this assumption P can then be expressed as N (0, σ2), where N
represents a Gaussian distribution. Therefore, we have

yi,m ∼ N
(
M (x |θi,m ) , σ2

i,m

)
. (6)

The derived explanatory models must capture the tendency of the on-time performance to de-
teriorate with increasing weather score, represent the uncertainty distribution observed within each
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weather score, and enable quantifying the impacts of dangerous phenomena. These requirements
are met by the following three key components in the model derivation:

Deterministic mean trend derivation The deterministic mean trend refers to the M function
in Eq. (5), which quantifies how, on average, each airport arrival on-time performance varies
with increasing weather score.

Model parameter derivation via Bayesian approach To ensure that the derived models are
realistic and can represent actual situations, the Bayesian approach is employed to infer the
appropriate model parameters based on data.

Dangerous phenomenon impact assessment The impact of each dangerous phenomenon is
assessed by quantifying the mean shift of the derived model corresponding to a particular
dangerous phenomenon, as compared to the one without dangerous phenomena. Let us index
the data set without dangerous phenomena with i = 1, and those containing thunderstorm,
shower, and cumulonimbus with i = 2, 3, 4, respectively. This mean-shift calculation is illus-
trated in Fig. 7.

Without dangerous
phenomena Thunderstorm Shower CumulonimbusData set

Model

Dangerous phenomenon 

impact assessment

Figure 7: Quantifying the impact of each dangerous phenomenon by calculating the mean shift of
the derived models.

Each of these components is further discussed in the following subsections. For our research, we
construct the model based on the Python numerical programming tool NumPy (Harris et al., 2020),
and Python probabilistic programming tools Pymc3 (Salvatier et al., 2016) and ArviZ (Kumar et al.,
2019).

3.1 Bayesian model structure
The Bayesian model structure to derive the appropriate model parameters is explained in this
section. The overall model framework is illustrated with a directed acyclic graph (DAG), as shown
in Fig. 8. Each derived model (for a particular combination of i, i.e., the data set based on weather
condition, and m, i.e., the on-time metric performance) has its own DAG. All of them, however,
share the same structure, as described below. In this DAG, squares and circles denote constants and
variables, respectively. Solid arrows indicate stochastic dependency, while dashed arrows signify
deterministic dependency.

Both the deterministic and stochastic components of the model, referring to Eq. (6), are shown
in this DAG. The inserted rounded rectangle with a blue frame refers to the deterministic trend
function, M, in our framework. Each M function is characterized by a set of local parameters,
θ =

[
θ1, θ2, . . . , θn

]
(highlighted in blue in Fig. 8). These local parameters and the model variance

(σ2
i,m) are inferred based on data by using the Bayesian approach.

13



......

Deterministic
trend function

Dataset

1 No dangerous phenomena

2 Thunderstorm

3 Shower

4 Cumulonimbus

Metric

1

2

3

......

Figure 8: The directed acyclic graph (DAG) for the proposed Bayesian model structure.

We will now describe the Bayesian update procedure, where the posterior distribution of model
parameters (θ and σ2) for each model (i,m) is expressed as

P
(
θi,m, σ2

i,m |Di,m

)
∝ P

(
Di,m

∣∣θi,m, σ2
i,m

)
P
(
θi,m, σ2

i,m

)

∝ P
(
Di,m

∣∣θi,m, σ2
i,m

)
P
(
θi,m|σ2

i,m

)
P
(
σ2
i,m

)

∝ P
(
Di,m

∣∣θi,m, σ2
i,m

)



n∏

j=1

P
(
θji,m|σ2

i,m

)

P

(
σ2
i,m

)
.

(7)

Since we assume that σi,m and θji,m are statistically independent, we have P
(
θji,m|σ2

i,m

)
= P

(
θji,m

)

and therefore,

P
(
θi,m, σ2

i,m |Di,m

)
∝ P

(
Di,m

∣∣θi,m, σ2
i,m

)



n∏

j=1

P
(
θji,m

)

P

(
σ2
i,m

)
. (8)

In this Bayesian update procedure, P
(
Di,m

∣∣∣θi,m, σ2
i,m

)
denotes the likelihood function, whereas

P
(
θji,m

)
and P

(
σ2
i,m

)
refer to the prior distributions of the model parameters.

Without any prior knowledge of the local parameters’ distributions, the commonly used Gaus-
sian distribution is selected due to its generality (Bishop, 2006; van de Schoot et al., 2021). As
such, the prior distributions of our model parameters can be expressed as

θj ∼ N
(
µj , σ

2
j

)
, (9)

σi,m ∼ |N
(
µ0, σ

2
0

)
|. (10)

σi,m follows a half-normal distribution, predefined by (µ0, σ
2
0). We define µ0 as equal to zero

and σ0 as equal to 10 to avoid providing too much preliminary information for σi,m. Each local
parameter θj has its corresponding µ and σ. In the Bayesian context, hyperparameter refers to

the parameter of a prior distribution (Gelman et al., 1995). In our model,
(
µ0, σ

2
0

)
and

(
µj , σ

2
j

)
∀j
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are the hyperparameters. For convenience, we define ϕ as a hyperparameter vector containing all

the prior distribution’s parameters
(
µ0, σ

2
0

)
for σi,m and

(
µj , σ

2
j

)
for θj ∀j (highlighted in green in

Fig. 8).
Although a different model is derived for each (i,m) combination, some similar characteristics

are observed in all of them. First, all on-time performance metrics deteriorate (i.e., display higher
values) with increasing weather scores in all data sets. Second, these metrics have their values within
the [0, 1] range (recall that µAD is normalized to µ̃ in Eq. (4)). Owing to the similarity among all
data sets, their hyperparameter vectors ϕ can be regarded as exchangeable. This implementation
is known as Bayesian hierarchical modeling (Gelman et al., 1995). This scheme is convenient when
considering the impact of dangerous phenomenon, and beneficial toward computational efficiency.
Next, we perform an evaluation process for the deterministic mean trend selection.

3.2 Deterministic mean trend selection
The deterministic mean trend M is selected to represent the deterioration of airport arrival on-time
performance as the weather condition worsens. For the problem at hand, we select five potential
candidates, namely two sigmoid functions (logistic and Gompertz), power function, quadratic func-
tion, and linear function (Table 3). The number of parameters n (in the third column) corresponds
to the number of local parameters shown in the above DAG (Fig. 8). For the Gompertz function,
for instance, we have θ = [c, x0, k, y0]; hence, n = 4.

Table 3: Five potential deterministic functions for deterioration trend representation.

Model (M) Equation No. of parameters (n)

Logistic c
1+e(x0−kx) + y0 4

Gompertz c exp
[
−e(x0−kx)

]
+ y0 4

Power kxc + y0 3

Quadratic kx2 + cx+ y0 3

Linear kx+ y0 2

The predictive accuracy of each derived model is evaluated using the expected log pointwise
predictive density (ELPD), that can be approximated via the widely applicable information criterion
(WAIC) and leave-one-out cross-validation (LOO) methods without extra running steps. WAIC
and LOO are methods for measuring pointwise out-of-sample prediction accuracy from a fitted
Bayesian model using log-likelihood values evaluated at posterior simulations of parameters (Vehtari
et al., 2017). Eq. (11) presents the definition of ELPD, where yu represents unobserved data, Ptrue

represents true distribution of unobserved data, and Ppost represents the posterior distribution,

ELPD = E [logPpost (yu)] =

∫
Ptrue(yu) [logPpost (yu)] y.u. (11)

Fig. 9 shows the predictive accuracy of five models on three arrival traffic performance metrics.
The dark circles represent ELPDLOO, and the gray triangles represent ELPDWAIC . Both of them
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have similar mean values but different standard errors. The vertical dashed line indicates the most
accurate mean ELPD value for each arrival performance metric.
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Figure 9: Evaluation results, predictive accuracy (ELPD) via LOO and WAIC.

For all three traffic metrics, the growth functions (Logistic, Gompertz) show their superiority
in predictive accuracy. Among the growth functions, Gompertz shows a slight advantage in µ̃ and
RTd compared with the logistic function. For RTc, the Gompertz function even outperforms the
logistic function in terms of predictive accuracy. It is worth mentioning, if we apply this model
to data pertaining to other airports, the evaluation results might be different since the aviation
weather impact study is location-dependent. To sum up, we evaluate the predictive accuracy of
five deterministic mean trend functions in this subsection. The results show that the Gompertz
function has the best performance for the problem at hand. Thus, only the Gompertz function will
be considered in the subsequent analyses and discussions.

3.3 Posterior computation via the No-U-Turn Sampler (NUTS)
After selecting the Gompertz function as our deterministic mean trend, we now discuss the posterior
distribution computation for the Bayesian inference. For our proposed framework, calculating
the posterior distributions of the underlying system can be intractable (Eq. (8)). As such, we
apply a Markov chain Monte Carlo (MCMC) algorithm, in particular the No-U-Turn sampler
(NUTS) (Hoffman et al., 2014), as our posterior sampling method. NUTS is developed based on
the Hamiltonian Monte Carlo (HMC), a sophisticated MCMC method that does not suffer from
randomness and sensitivity to correlated parameters. Compared to HMC, NUTS is more advanced
because of its adaptive property. When using MCMC, it is important to ensure model convergence.
The informative level of priors is vital for the model’s convergence performance (Gelman et al.,
2017; van de Schoot et al., 2021). In this work, we use the Gelman–Rubin diagnostic (R̂) and prior
predictive check to select the appropriate hyperparameters for our weather impact quantification
model. The results are shown in Fig. 10, and described below.

To the left-hand side of Fig. 10, the x-axis shows the corresponding model parameters when
the Gompertz function is used (including local parameters and model standard deviation, which
represents the model variance) and the y-axis displays the Gelman-Rubin diagnostic R̂ for the
MCMC convergence evaluation. R̂ is expressed as

R̂ =
V̂

W
, (12)

where W is the within-chain variance and V̂ is the posterior variance estimated between traces.
The red dashed line in Fig. 10 (where R̂ = 1) is the convergence threshold line, below which all
traces converge. R̂ greater than one indicates that one or more chains have not yet converged,
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Figure 10: The Gelman–Rubin diagnostic and prior predictive check for µ̃.

while R̂ greater than 1.2 is regarded as rigorously non-convergent (Brooks and Gelman, 1998).
For our case, we check four sets of prior’s convergence performance on µ̃, which depends on their
informative level. The prior sets include non-informative (θj ∼ N (0, 1002)), weakly informative
(θj ∼ N (0, 102)), informative #1 (µj = [3, 0, 0, 1], σj = 1), and informative #2 (µj = [3, 0, 0, 1],
σj = [0.5, 0.25, 0.1, 0.1]). Informative priors are decided based on the geometrical meaning of
each model parameter, data observation, and the range of expected outputs. Results show that
when non-informative or weakly informative priors are used, the model will not converge. A full
convergence for all five parameters is only observed when the informative #2 prior is used.

To illustrate the convergence, we draw 50 samples from non-informative priors and informative
#2 prior, then plot the generated function profiles in the right-hand side of Fig. 10. This process
is called the prior predictive check (van de Schoot et al., 2021). With non-informative priors, the
output range is too permissive, and the prior predictive curves are widely scattered within the
[−250, 200] range. In contrast, the prior predictive curves of informative #2 priors yield a more
definitive trend and narrower distribution, without losing the flexibility in fitting the data. Thus,
the informative #2 priors are used in our model derivation to ensure the model’s convergence
performance.

4 Results and discussions
In this section, we present our model applications and demonstrate its use to evaluate the impacts
of adverse weather conditions on aircraft arrival performance. As mentioned in Section 2, arrival
flight information data and weather data pertaining to HKIA from 2017 to 2018 are used to generate
results presented in this section. Table 4 shows the detailed model setup. Input x is the weather
score, and output y is each airport arrival on-time performance metric, i.e., µ̃, RTc, or RTd. The
numbers of data points shown here refer to those obtained from the undersampling and oversampling
procedures, which are mentioned in Section 2.3.3, for each weather score. In other words, they refer
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Table 4: Model setup for Bayesian parameter tuning.

Feature Content/value

Dataset

x Weather score
y µ̃, RTc, RTd

No. of data (without dangerous phenomena) 184
No. of data (Thunderstorm) 90

No. of data (Shower) 208
No. of data (Cumulonimbus) 113

Model

Prior Informative #2
Deterministic mean trend Gompertz
Posterior computation No-U-Turn Sampler

Tuning steps 2,000
Drawing steps 1,000

Number of chains 4

to the heights of green bars in Fig. 6. The number of Markov chains is four, and for each chain,
there are 2,000 tuning steps and 1,000 drawing steps.

Three key results are presented in this section, namely the weather impact quantification without
dangerous phenomena, the sensitivity of traffic metrics towards adverse weather conditions, and
the impact quantification of dangerous phenomena.

4.1 Weather impact quantification without dangerous phenomena
To quantify the weather impact when no dangerous phenomenon is present, we generate the dis-
tribution of possible outputs, using 4,000 random draws for µ̃, RTc, and RTd, with the obtained
posterior model parameters. The mean output, its highest posterior density (HPD), and the HPD
interval are illustrated in Fig. 11.

As Fig. 11 illustrates, the proposed method can adequately capture the nonlinear growth prop-
erty of aircraft arrival traffic. The observed phase transition separates the situations where airport
arrival performance is minimally affected and those when the impact is significant. The airport
arrival performance is relatively insensitive to weather scores before and after the transition. It
can also describe the uncertainty owing to the general feature of the Bayesian approach. Visually,
we can observe that the fitting performances for µ̃ (Fig. 11a) and RTd (Fig. 11c) are better than
that of RTc (Fig. 11b), where the latter shows poor-fitting at around weather scores four and five.
The possible reason is that the steepness level at the transition phase for the RTc is too extreme,
which might be more challenging to model. Increasing the model fidelity, such as adding a new
parameter to capture the slope variation, adversely affects model convergence. Hence, the model
showed in Fig. 11b is one that balances model accuracy and convergence.

It is easy to see that the fitting performance is superior in the lower range of weather scores. As
we can observe from the range of HPD, the cancellation rate has the narrowest bandwidth, while
RTd has the widest bandwidth. This observation suggests that the cancellation rate is the most
certain among the three metrics. In a real situation, cancellation is always the last option for flights
and tends to be avoided, which causes the lowest bandwidth of HPD for RTc. On the other hand,
the higher uncertainty concerning RTd suggests that there are a variety of causes for delays other
than weather conditions, which is consistent with real situations.
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Figure 11: Weather impact without dangerous phenomenon
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4.2 Traffic metric sensitivity towards adverse weather
In this section, we further interpret the sensitivities of the three metrics (µ̃, RTc, and RTd) con-
cerning adverse weather by visualizing the probability density of the local parameter samples from
the posterior distribution (Fig. 12). First, we inspect the local parameter x0, which represents the
horizontal location of the model’s midpoint. For the problem at hand, x0 refers to how fast these air
traffic performance metrics react towards the weather score. A larger x0 means a slower reaction.
Fig. 12 shows that RTc has the slowest reaction, with a mean value of 5.73. On the other hand,
RTd and µ̃ have mean values of 2.84 and 3.91, respectively, which indicates that more significant
deterioration in these metrics is observed at lower weather scores.
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Figure 12: Comparison of the parameter posterior distribution for three arrival performance metrics

The local parameter y0 indicates the offset distance between the curve and y = 0. For this
parameter, the delay rate distribution has the highest mean value at 0.26. This value means that
at HKIA, even at a weather score of zero, there is an average of 26% arrival flight delays per hour.
These delays might be due to various reasons other than weather. The third local parameter, c,
refers to the scaling factor for the exponential component; it can stretch or contract the curve to
fit within the appropriate value range of the output. Since our outputs range within [0, 1], the c
value should never exceed one. The fourth local parameter, k, corresponds to the steepness of the
growth function, i.e., how fast the performance metric deteriorates once it reaches the transition
point. In this case, RTc has the steepest curve and hence the largest k value.

Attaching physical intuitions to the model parameter’s geometric interpretation, as discussed
above, can be used to compare the characteristics of different airports. One potential application is
to use the same framework to evaluate and compare the airport arrival on-time performance among
airports within a multi-airport system (metroplex). A metroplex refers to a certain geographic area
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covering several airports within close vicinity to each other. As such, a similar weather condition
can be reasonably assumed for all these airports. For example, let us consider an arbitrary airport
A within the vicinity of HKIA. Upon deriving the models for the same time range, we find that
for µAD, x0,HKIA > x0,A. This result indicates that while airport A’s hourly mean arrival delays
start to increase significantly following adverse weather, HKIA can maintain its regular operation.
Furthermore, if y0,HKIA > y0,A, other factors, besides weather, have a stronger influence on HKIA’s
arrival delay performance than airport A’s.

4.3 Dangerous phenomenon impact quantification
In this section, we train three new models (for data with the thunderstorm, shower, and cumu-
lonimbus weather conditions) following the setting in Table 4 with the Gompertz equation. Owing
to the lack of data at higher weather scores for these three weather conditions, we present the pos-
terior distributions of y when x equals zero, which are shown in Fig. 13. Since cancellation barely
happens when the weather score equals zero, we select µAD and RTd as our outputs. The blue
distribution is for no dangerous phenomenon, while orange is thunderstorm, green is shower, and
red is cumulonimbus. The mean shifts in the airport arrival on-time performance metrics, which
are described in Section 3, are indicated by the arrows.

Without any dangerous phenomena, the mean arrival delay per hour (in minutes) and the
number of delays per hour are shown to have the lowest mean values, i.e., the best performance,
which is not surprising. From observing the mean shifts, shower and cumulonimbus have more
significant impacts on the mean arrival delay per hour, while the impact of thunderstorm is relatively
more moderate. Without any dangerous phenomena, the mean arrival delay is around 20 minutes.
Thunderstorm adds another 40 minutes, whereas shower and cumulonimbus, which are shown to
have similar impacts, cause the mean arrival delay to increase to 70 minutes. For the number
of delays per hour, while no dangerous phenomenon condition has around eight delayed flights
per hour, those with dangerous phenomena are expected to have 10–15 delayed flights per hour.
We observe that, for cumulonimbus, the number of delayed flights increases approximately to 15,
i.e., almost double. The other two dangerous phenomena increase the number of delayed flights
by around four per hour. The weather impact quantification and insights presented above would
not be possible if we were to use the ATMAP weather score as shown in Fig. 4. These results
highlight the benefits of the proposed hierarchical approach to evaluate and quantify the impacts
of dangerous phenomena on airport arrival on-time performance by comparing their performance
to when no dangerous phenomena are observed, thereby addressing some existing research gaps in
the literature.

5 Conclusion
In this paper, we propose a hierarchical Bayesian model to quantify the relationship between
weather impact and airport arrival on-time performance, with a case study at HKIA. The key
contributions from this paper are summarized below:

1. This work offers the first and largest-scale quantitative study on weather impact quantification
based on data pertaining to HKIA. Since aviation weather studies are location-dependent, a
study specific to HKIA can assist in policy- and decision-making analyses by the air trans-
portation authority in Hong Kong.

2. Compared with previous studies using METAR data, the growth function employed in this
work can describe the nonlinear property of airport arrival performance towards hazardous
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Figure 13: The impact of dangerous phenomenon at weather score = 0.
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weather, where a trend akin to a phase transition is observed. Furthermore, applying the
Bayesian approach ensures the model’s ability to quantify the uncertainty.

3. The interpretability of growth function parameters allows us to compare the airport arrival on-
time performance’s tolerance under weather impact by comparing the posterior distribution
of a certain parameter across different performance metrics.

4. The developed framework also includes a systematic dangerous phenomenon impact quantifi-
cation procedure, offering a more comprehensive weather impact quantification that includes
a wider spectrum of weather scores compared to other similar studies. Note that dangerous
phenomena are commonly excluded in past aviation weather impact studies.

5. This work will enrich the literature on terminal arrival delays, which is still relatively scarce
as compared to other types of flight delays.

Specific to HKIA conditions, our results reveal several essential conclusions about adverse
weather impacts. First, the cancellation rate has the slowest reaction to adverse weather among
these three metrics. Moreover, even when the weather score equals zero, the delay rate per hour is
still noticeable because of other operational reasons. Furthermore, for weather score equals zero,
cumulonimbus has the highest impact on delay rate, while both shower and cumulonimbus show
significant impact on mean arrival delay per hour.

The use of METAR data in this study adds to the generalizability of the developed framework,
since the data are available for more airports. However, despite its versatility, the resolution is
low. METAR data are often recorded hourly and limited by their location and features. For
instance, wake turbulence properties and separation requirements are essential issues affected by
weather (Hon and Chan, 2017; Hon et al., 2022), yet these are not reflected in METAR.

It is a widely adopted practice to use results from computational models to support decision-
making and policy analyses. The work presented in this paper is particularly relevant to assessing
air traffic management and delay mitigation strategies, especially when combined with other mod-
els describing air traffic movements around HKIA. Quantifying the weather impact will help ATC
at the strategic and pre-tactical stages of flight planning and provide more accurate weather con-
straints for scheduling aircraft arrivals. This study is currently underway in the authors’ research
group (e.g., Lui et al., 2020a,b; Hon, 2021).

There are several potential developments for this work. The model is developed to be gener-
alizable, such that it can quantify the weather impacts for other airports using the relevant air
traffic and weather data. Note that depending on the data, the suitable deterministic mean trend
function M might be different for different airports. Similarly, PDFs other than Gaussian can
also be assumed. The same selection criterion, i.e., the ELPD method, can still be used. The
Bayesian inference approach will automatically find the appropriate model parameters based on
data. Upon extending the study to other airports, we can then compare and analyze their airport
arrival on-time performance, as discussed in Section 4.2. This comparison can also include the
impact of dangerous phenomena. This comparison, however, is beyond the scope of the current
paper due to the lack of detailed flight schedule data of other airports. Besides, the Bayesian
approach employed in this framework will easily update model parameters when newly-observed
data are available. This updateability property, as opposed to a static model, will make the model
adaptable to future changes due to, for instance, climate change. Finally, when higher-resolution
weather data are available, we can increase the level of fidelity of our model to enable modeling the
weather–air traffic interaction more realistically.
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List of notations

SAT scheduled arrival time
AAT actual arrival time
N total number of scheduled arrival flights in specific hour
µAD mean arrival delay per hour (minutes)
RTc cancellation rate per hour
RTd delay rate per hour
µ̃ normalized mean arrival delay per hour
y output, individual air traffic performance metric
x input, weather score
N Normal distribution
M deterministic mean trend model
f index for the flight
m index for the arrival performance metric
i index for the data set
j index for the local parameter
θ local parameter
θ local parameter vector
n number of local parameters
D arbitrary dataset
ϕ hyperparameter vector
x0, y0, c, k local model parameters for Gompertz function
ELPD expected log predictive density
yu unobserved data
Ppost posterior distribution
Ptrue true distribution of unobserved data
HPD highest posterior density
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