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Recent air traffic management aims to provide a safety-first operation to support the aircraft
approaching and landing procedures. Due to the complexity of air traffic in the terminal control
area (also known as the terminal maneuvering area or TMA), simultaneous consideration of
aviation economics, environmental concerns, and safety operations in decision makings can
be challenging. To improve air traffic controllers’ work efficiency and reduce the adverse
environmental impact, it is crucial to establish a robust arrival strategy that incorporates
weather conditions and flight trajectory configuration. The current state-of-the-art solutions
for arrival sequencing and scheduling problem focus more on the operation research aspect,
which neglects the airway configuration. Also, no wind condition is assumed to simplify the
weather condition. Furthermore, many research efforts have not properly considered practical
phenomenon such as holding patterns in their arrival sequencing model, which affects the
accuracy of fuel burnt consumption. In this work, we will construct a study on aircraft arrival
flow based on historical data at Hong Kong International Airport (HKIA). By extracting
features from the data, our results include the spatiotemporal pattern recognition for aircraft
arrival transit time and congestion inside HKIA TMA. Besides delivering the statistical analysis
on the HKIA aircraft arrival flow, an arrival transit time prediction based on random forest
regression is also converted. Results show that our methodologies are not only advantageous
in extracting crucial hidden information from historical data for air traffic controllers but also
can increase the accuracy of arrival transit time prediction under most of the circumstances.

Downloaded by IMPERIAL COLLEGE LONDON on June 13, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-2869

Nomenclature

TMA = terminal maneuvering area
HKIA = Hong Kong International Airport
ETA = estimated time of arrival
ATM = air traffic management
ATC = air traffic control

STAR = standard instrument arrivals
ILS = instrument landing system
FCFS = first-come first-serve

ASP = arrival sequencing problem
CPS = constraint position shifting

I. Introduction
IN the past few decades, air transportation plays an increasingly important role in promoting global business interaction
and economic development. The positive impacts of the world aviation industry on social and economic development
are far more extensive and richer than the profits realized by the industry. In the first half of 2019, the total revenue of
system-wide global commercial airlines is 865 billion US dollars [1f]. The figure below (Fig. (1)) illustrates the trend of

*PhD student, Department of Mechanical and Aerospace Engineering, gnlui@connect.ust.hk
fProfessor, thierry.klein@math.univ-toulouse.fr or thierry01.klein @enac.fr
* Assistant Professor, Department of Mechanical and Aerospace Engineering, rpliem @ust.hk, ATAA Member

Copyright © 2020 by HKUST. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.


http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-2869&domain=pdf&date_stamp=2020-06-08

Downloaded by IMPERIAL COLLEGE LONDON on June 13, 2020 | http://arc.aiaa.org | DOI: 10.2514/6.2020-2869

the number of carried passengers in the global air transportation from 1980-2019, based on data obtained from the
World Bank Open Data. Recently, the global aviation industry is facing a significant challenge due to the resulting travel
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Fig. 1 The trend of the number of carried passengers in air transportation from 1980 to 2018.

restrictions for the COVID-19 pandemic. Starting in 2020, the local trough like the ones in 2001-2003 and 2007-2009 is
expected to appear. Even though the pandemic will decrease the volume of air transportation temporally, the industry is
expected to recover in a short period of time. Therefore, air transportation is still facing a series of challenges such as
increasing demand, safety issues, and sustainable development from a long-term perspective. Data collected by the
US Bureau of Transportation Statistics shows that 20.29% of arrival flights were delayed in 2019, up from 18.75% in
2018, 18.14% in 2017, and 17.16% in 2016 in U.S [2]. To provide an organized and safe air transportation environment,
air traffic management (ATM) coordinates and manages different systems inside air transportation. The International
Civil Aviation Organization (ICAO) first proposed the importance of new air navigation systems and procedures for the
growth of the civil aviation industry in 1983 [3]]. Nonetheless, the recent ATM systems are still under technological and
operational limitations which contribute to undesirable delays and additional negative environmental impacts, such as
emission and noise. FAA (Federal Aviation Administration), ICAO (International Civil Aviation Organization), and
Eurocontrol established novel projects and plans successively for ATM upgrades (NextGen, ASBU, SESAR) in the late
2010s almost simultaneously.

To further improve the efficiency of the air traffic management system, novel technologies such as data-driven
approaches have recently been explored. Generally, a data-driven approach can automatically analyze and obtain
patterns from data and derives rules to predict unknown data. Because a large number of statistical theories are involved
in learning algorithms, a data-driven approach is closely related to inferential statistics and large scale of data. In the
context of ATM, the use of data-driven models has been explored in trajectory reconstruction, delay prediction, and fuel
burnt computation [4-0].

The key point for the future is an integrated system that involves all flight conditions, decision phases, various
locations, and weather conditions. However, due to political reasons and technical obstacles, constructing a whole-scale
ATM data study is still challenging. The ATM research community defines several research areas for air transportation
to reduce the level of complexity. Based on the flight phase, the research can be separated into airport stage, approach
stage, en route stage, and regional stage [7]. On the other hand, ATM research could be classified by the air traffic flow
management phase based on the period, including strategy phase, pre-tactical phase, and tactical phase [8]. The strategy
phase starts from a year before the real operation day up to the week before, the pre-tactical phase represents the week
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before the real operation day, whereas the tactical phase stands for the real-time operation. For the weather impact on the
air traffic flow management, seasonal patterns will impact the strategy phase of management. The precise continuous
weather prediction data, on the other hand, can be used for the tactical phase air traffic management. Terminal control
area, which includes airport stage and approach stage, is regarded as the bottleneck of the air traffic management system
because of its natural high traffic density and complexity. From the fuel burn perspective, more efficient ATC (Air traffic
control) could save 5-10% of aviation fuel by avoiding holding patterns and indirect airways'. The possible factors that
contribute to aircraft delays inside TMA are local weather conditions, airspace capacity, and arrival sequencing. Various
local weather conditions could conduct a complicated impact on aircraft approaching and landing. Rain, ice, snow or
hail affect aircraft’s occupied time on runways. Thunderstorm will reduce the airspace capacity and cause congestion,
and clouds will affect the visibility for pilots” operation. For airspace capacity, limited manpower and lack of automation
are causing holdings and congestion. Also, an optimum arrival sequencing strategy can reduce the undesirable extra
airborne time due to aircraft wake vortex. This research is focused on the aircraft arrival flow inside the HKIA terminal
control area, to investigate the correlation between spatio-temporal factors and aircraft arrival on-time performance. To
further include the local weather forecast information, we will focus more at the tactical phase. In the next section, a
brief literature review over this topic will be established. The proposed approach will be described in Section. |lII|and
the statistical analysis are presented in Section. The arrival transit time prediction will be discussed in Section.
Finally, the conclusion of the present work will be presented in Section.

II. Literature review
This section provides an overview of related research areas included air delay analysis, arrival sequencing, and
data-driven approach in ATM research. Research on aircraft arrival sequencing has always closely tied with aircraft
delay analysis studies. There have been a recent surge of data-driven investigations in this area. The abundance of
aviation data has increasingly been used to study the spatio-temporal patterns of air traffic performance.

A. Aircraft delay research

In 1976, the Federal Aviation Administration (FAA) published an Advisory Circular of Airport Capacity and Delay.
This circular instructed the government to compute airport capacity and delay for airport planning and design. In chapter
3, the FAA defined many components of the performance of airport capacity and delay, and also introduced a method to
calculate these factors. This Advisory Circular is considered as one of the earliest instructions for analyzing airport
capacity and delay [9]]. Erzberger, H. presented the design principle and algorithm for building a real-time scheduler in
automated air traffic management concluded that a large amount of delay allocation can have adverse effects [10]. Due
to the negative impacts of aircraft delay, researchers started to study the possible causalities for the aircraft delay and
investigated ways to reduce delay. On the air traffic congestion aspect, research on delay propagation and air traffic
network effect over multiple origin-destination (OD) pairs had shown some success [11H17)]. Among these research, the
authors focused mainly on applying different methods to describe the system-wise delay interaction and propagation,
with much simplifications on the aircraft mission procedure and flight performance.

Besides the delay propagation research, there is a growing body of literature on the aircraft delay inside the terminal
area. Some of the research focused on the causality analysis [[18-20]. Several operational factors such as time of the day
have been found to have a crucial impact on arrival delays, while some analyzed the negative economic impacts due to
terminal delay [21, 22]]. The economic loss due to terminal delay can be analyzed by evaluating the extra fuel cost and
operational cost due to delay. However, evaluating the economic loss accurately is challenging if we only rely on low
fidelity flight simulation and fuel burn quantification. Further improvement in this aspect can be incorporate with a high
fidelity fuel consumption model, such as those presented in [6} 23| [24].

B. Aircraft arrival sequencing research

When aircraft are approaching the near-terminal control area, air traffic controllers will decide on the landing runway
and instruct the aircraft landing while making sure that the aircraft’s horizontal separation limits are satisfied. The most
commonly used procedures are the standard instrument arrivals (STAR), the instrument landing system (ILS), and the
first-come first-serve (FCFS) strategy. The FCFS strategy is intuitively regarded as the best strategy for ATC which can
reduce the operation workloads and the airspace complexity. However, the inefficiency and low runway usage rate of
FCFS have recently been recognized as its limiting factors.

IThe Economist. “Air-traffic control is a mess,” Jun 15th, 2019 edition.
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To maximize the runway throughput and minimize delay time, researchers are seeking an alternative solution for
the arrival sequencing problem (ASP). Constraint Position Shifting (CPS), the methodology that aims to increase the
runway throughput rate, was first developed by Dear in 1976 [25]. Compared to FCFS, CPS has a dynamic property that
allows aircraft in sequence to shift their position under a maximum point shifting limitation. The performance of CPS
under different circumstances have been investigated in [26-29], and new strategies such as Weighted-CPS [30] has
been developed. Besides CPS, alternative solutions on aircraft dynamic scheduling problems have also been proposed
during the last few decades [31}32].

Other than regarding ASP as a dynamic scheduling problem, people also tried to solve it as a static case, which can
incorporate multiple runways and more aircraft with less computational costs. Beasley et al. first presented their static
solution on single and multiple runways in 2000 [33]]. A similar methodology called time decomposition approach with
Simulated Annealing (SA) was developed by Ma et al. to solve the aircraft landing sequencing problem afterward [34].
Three kinds of conflict including link conflict (wake separation regulation), node conflict, and runway conflict were
defined. The proposed method reduced computational time compared to using FCFS. Based on their previous work,
further expansion on the integrated airspace and airport operation system was established [35]. Three types of arrival
strategies tested in this work are FCFS, optimized sequencing strategy (wake separation optimized), and optimized
sequencing strategy with runway assignment. The objective was to minimize the summation of airway/taxiways overload
and flight delay. However, in their research, they assumed that every flight could follow the STAR and ILS, which would
not work with the adverse weather conditions and special airspace events.

From the industrial aspect, recent arrival sequencing tools will generate the estimated time of arrival for each
flight and trajectory prediction for sequencing decision making based on runway occupation. The integration of
environmental impact and seasonal variation into the short/medium term aircraft demand forecast is still lacking.
Data-driven approaches might be useful in this scenario [7]]. A brief introduction of the data-driven approach in ATM
research is established in the next section. The limitation of the previous ASP research is lack of weather consideration
and abnormal situation consideration. Furthermore, the additional cost calculation is simplified.

C. Data-driven approach in ATM Research

With the abundance of data generated in the air transportation industry, there have been research efforts to utilize the
probabilistic and statistical methodology to describe, study, and improve the ATM system and regulations. Data features
that are relevant to ATM research include flight track (e.g., position, vertical and horizontal speed), flight information
(e.g., departure/arrival time, runway), weather condition (e.g., wind speed, visibility), and aircraft characteristic (e.g.,
aircraft type, engine type).

Flight trajectory data typically contain spatio-temporal information of flights. Researchers first investigated and
discussed the emerging of spatio-temporal data mining in 1999 [36]. Various clustering algorithms have been applied and
tested to merge flights into air flow to extract spatio-temporal information and features. K-means, hierarchical clustering
and density-based spatial clustering of application with noise (DBSCAN) have been applied, either individually or
combined, in airspace abnormal detection, TMA characteristic comparison and en-route traffic optimization [37-42].
With the help from clustering algorithms, the deep features of flight tracks can be used as inputs to learning models for
air flow performance prediction purposes. In this study, the clustering algorithm is also applied in the arrival transit
time prediction section.

II1. Proposed approach
Previous research has focused more on the standard route procedure which sometimes ignores holding patterns,
abnormal air paths and weather conditions. In our research, based on the flight trajectory data, we will perform a
data-analytic study on the historical data. In particular, we will derive a novel data-enhanced methodology to support
aircraft arrival sequencing strategy inside the terminal control area that can take into account weather information and
abnormal situation. The proposed approach procedure is as follows:

1) Analyze historical flight trajectory data to study the spatio-temporal patterns. In this process, we incorporate
trajectory simplification and an algorithm for holding pattern detection. Statistical analysis will be constructed
based on the historical data and the extracted features.

2) Following the data analytic results, random forest regression [43] is employed in our prediction study, the
accuracy of the model for different size of data and different preprocessing procedures are evaluated. The input
variables include the time of day, entry altitude, entry groundspeed, entry vertical rate and entry heading angle.
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A. Data description

Flight information data are collected from the HKIA online API. We can obtain the detailed information of flights
that lands and departs at HKIA for the past three months. A new flight information schedule for the next two weeks is
also available, which can be used for model validation purposes.

Flight trajectory data in this research are collected by the Automatic dependent surveillance-broadcast (ADS-B)
technology. ADS-B is a technology that tracks the aircraft’s position and periodically broadcasts it. There are several
online ADS-B resources such as Flighradar24 [44], FlightAware [45], and OpenSky Network [46]]. We incorporate the
OpenSky Network data for its easy accessibility. We apply the Python tool "Traffic" for data extraction and rearrangement
from the OpenSky Network [47]. 30 days (May 1%’ to May 30'") of arrival and departure flight trajectories are used in
this research. The information included in the ADS-B data is shown below (Table [T).

Table 1 Example features from ADS-B data.

Features Examples

Callsign CAL921

Icao24 8991b3

Latitude, longitude 22.36°, 117.49°

Altitude 32000 feet

Vertical rate 64 feet/min

Heading angle 249.44°

Groudspeed 452.64 knots

Timestamp 2019-05-25 14:56:37+00:00

The data include real-time geographical information and operating information for one flight, also the identity code
recorded by ICAO. After filtering the data, 8760 of flights will be used in the arrival transit time prediction study.

B. Trajectory simplification

The large amount of points to represent one flight trajectory can lead to high computational cost and complexity.
Trajectory simplification algorithm aims to overcome this issue by reducing points that are redundant in representing a
flight trajectory. In this study, we use Ramer-Douglas-Peucker (RDP) algorithm [48]] for points reduction.The RDP
algorithm was first introduced as a recursive simplification method in cartography, which has also been employed on
vision system [49], computational geometry [S0], and road modeling [51], etc. This method is demonstrated on a flight
trajectory example (CAL 921, May 26, 2019), which is illustrated in Fig. [2| Blue dots represent the original trajectory
data, whereas red dots represent the remaining trajectory points obtained based on the RDP algorithm. In our example
below, the trajectory simplification algorithm reduces the number of points from 2471 to 34, i.e., only 1.4% of data
retained. From this simple illustration, we can observe a significant reduction in the number of points used to represent
the flight trajectory, and yet the trajectory profile maintaining accuracy. This observation demonstrates the efficiency of
RDP algorithm in reducing the computational cost in the context of flight trajectory modeling.
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Fig. 2 Trajectory simplification example.

C. Automatic holding pattern detection algorithm

Holding pattern is an alternative flight trajectory representation. While pilots told by the ATC to fly into a holding
pattern, they will control the aircraft to loiter inside a race track loop. Many research has neglected the holding patterns
while investigating the behaviors and characteristics flight trajectory data. Inspired by our previous work [52]], a more
robust holding pattern detection algorithm is developed. To incorporate the automatic holding pattern detection, the
algorithm will go through each line segment representing a flight trajectory, where each line segment is defined by two
adjacent points obtained through the RDP algorithm. Each line segment is evaluated whether it intersects any other line
segments of the same flight trajectory. The algorithm will label all the intersection points, by then we can recognized
the start point and endpoint for the holding pattern. This procedure is illustrated in Fig.[3] Fig.[3aindicates where

I Bcfore holding pattern
22.0 22,0/ HEE Holding pattern
HEl After holding pattern
€215 €215 //O
3 5
21.0 21.0
20.5 20.5
113.0 113.5 113.0 113.5
Longitude °© Longitude °
(a) Intersection detection. (b) Holding pattern segmentation.

Fig.3 Automatic holding pattern detection.

the self-intersection is identified, and Fig. [3b|shows the segmented sub-trajectories, where the portions of the flight
trajectory before, during, and after the racetrack holding patterns are identified with different colors.
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IV. Statistical analysis

A. Temporal pattern recognition

By employing the automatic holding pattern detection algorithm, we first observe the statistics of 30 days data (May
2019). Fig.[]illustrates the arrival transit time distributions of all available arrival flights we grabbed with and without
holding patterns. Arrival transit time is the representation of the time aircraft spends inside the TMA before landing
on the runways. This value is calculated from the flight trajectory data, by taking the difference between the time of
entering HKIA TMA and the time of the aircraft first reaches its lowest altitude. As the figure illustrated, even within
the same TMA, the arrival transit time of flights could vary between 500 seconds to 4000 seconds. In other words,
some flights spend almost eight times longer airborne time inside the terminal control area than others. The figure
indicates that those with holding patterns are likely to spend more time in TMA, although they occur less often than
those without racetrack holding patterns. The overlap between the flights with and without holding patterns suggests
that some flights will need to follow turning maneuvers or vectoring to wait for their turn to land instead of holding.
Furthermore, holding planes in the air, either by following the race track patterns or by vectoring them and making them
fly farther wastes fuel [53]]. The hourly feature of arrival flight numbers is crucial since that hourly capacity reveals the

Holding pattern

400 Non-holding pattern
n
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2
£ 200
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Transit time, seconds

Fig. 4 Flight time distributions of flights with and without holding patterns arriving at HKIA in May 2019.

airport capacity. According to ICAO, the capacity of an Air Traffic Services (ATS) unit depends on the level and type
of ATS provided, the complexity of the sector/area/aerodrome and the associated route structure, and ATC workload
(including control and coordination tasks to be performed) [7]. The time-of-the-day feature is considered as the most
important factor for delay classification [5]]. The box-plot shown in Fig. [5|infers the variation of the number of flights
within each hour in May 2019. There seems to be a clear separation between busy and non-busy hour periods since the
airport capacity for these two periods is notably different. Also, more variation is observed during the busy period,
which supports that more operation needs to be done during a busy period. Before we really incorporate weather data
into our study, we pick two days with different weather condition to construct a comparative study. Fig.[6]shows the
hourly variations in the proportion of flights with and without holding patterns, the arrival transit time distribution and
the corresponding rainfall contours. The accumulated rainfall contours demonstrates the specific higher rainfall on
HKIA’s arrival airways (Fig. |6a} Fig. on May 26", The data we used here are obtained from the public available
JAXA Global Rainfall Watch database [54]. Data from May 26th (Fig. [6b), with heavy rainfall, and May 30th (Fig. [6d),
with light rainfall are selected. Two figures are plotted with the same ranges of value along the y-axis. With heavier
rainfall, we observe a significantly higher proportion of flights with holding patterns, especially during peak hours. In
particular, these patterns are observed between noon to 15:00, and at 19:00. The increased proportion of flights with
racetrack holding patterns correlate well with the higher arrival transit time, as shown in the scatter distribution plots.
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Fig. 5 Hourly distribution of actual arrival flight number at HKIA (May 2019).
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and the corresponding transit time distribution along with rainfall observation.
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B. Abnormal congestion observation

Based on our previous observation, we continue our research by looking into the spatial arrival flow performance for
each hour, to discover the possible reasons for large amount of holding patterns and arrival airborne delays. The data
we used in this section are from 9:00 to 14:00 on May 26™. Due to the extreme rainfall and thunderstorm, there were
numerous delays and holdings on May 26™. By projecting the arrival transit time on the arrival flight trajectory, we can
observe the possible causes for longer arrival airborne time. Fig.[7]shows the variety of aircraft flight trajectories pattern
from 9:00 to 14:00 on May 26", Before 10:00 (Fig. , the air traffic were operating in the normal mode. For HKIA,
the normal operation mode is segregation, which means arrival and departure are using segregated runway. Starting
from 10 am (Fig. [7D), the operation mode became to mixed-mode, which is not typical at HKIA. Meanwhile, some
flights are instructed to fly in holding patterns, which increase the landing time. From 11:00 to 13:00 (Fig.[7c] Fig.[7d)
the operation turned back to segregated mode but with reverse runway usage. The possible reason for runway operation
transformation is the extreme rainfall and thunderstorm at certain area. Noticeable, severe delays and lot of holding
patterns appeared from 14:00 to 15:00 (Fig.[7f), where ATC were changing the reverse segregated mode back to normal
segregated mode. This information proves the propagation of delay and holding pattern are existed inside terminal
control area, and not just happened in air traffic network in a wider sense.

1000 2000 3000 1000 1000 2000 3000 1000 1000 2000 3000 1000
Arrival transit time, seconds Arrival transit time, seconds Atrrival transit time, seconds

(a) 9:00 (b) 10:00 (c) 11:00

B Departure flight
Arri

B Departure flight
Arrival

1000
Arrival transit

(d) 12:00 (e) 13:00 (f) 14:00

1000 1000 2000
Arrival transit time

Fig.7 Flight trajectory representation in HKIA TMA within a hour

V. Arrival transit time prediction

After performing statistical analysis on the historical data, we employ a machine learning technique for the arrival
transit time prediction. Machine learning methodology is an application of artificial intelligence which is capable to
learn from data automatically without human assistance. In this study, we incorporate the random forest regression [43]]
for our arrival transit time prediction. Random forest is one of the ensemble learning method which was first introduced
in 1995 [55]. Random forest applies the typical technique of bootstrap aggregating, or bagging, to train the dataset.
Random forest can be described as a combination of bagging and multiple decision-tree models. For our study, we
apply random forest regression as our learning model. The output feature for our model is arrival transit time, and the
input variables for the model are:

1) Altitude at entry point,

2) Groundspeed at entry point,
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3) Vertical rate at entry point,

4) Heading angle at entry point,

5) Time of the day (HK hour) when enters HKIA TMA.
The five input variables are regarded as the simplest case in our case. In addition to these five basic variables, we further
refine our models by including two identifiers: one to indicate whether a flight undergoes the racetrack holding pattern
or no, and another one to indicate which cluster a flight belongs to. In particular, we performed three refinements to the
model: by including the holding pattern identifier, the cluster identifier, and both. Clustering is also a machine learning
algorithm which can automatically label clusters by the given input variables (i.e. geometrical information). To cluster
the flight trajectories, we use Hausdorff distance as our distance metric:

dy(X,Y) = max {sup inf d(x,y),sup inf d(x, y)} (1
xex YeY yey X€X

where sup represents the supremum and in f the infimum. Generally, it is the greatest of all the distances from a point in

one set to the closest point in the other set. We choose to apply K-medoids to cluster the flight trajectories spatially [56]].

At this preliminary stage of the work, we only consider two clusters for illustration purposes, as shown in Fig.[§] As

shown here, we separate incoming flights from the East from the rest of the flight trajectories. Further studies with more

refined clustering will be performed at a later stage to provide more computationally rigorous and conclusive results.
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Fig. 8 Spatial flight trajectory clustering with K-medoids (May 26, 2019).

The k-medoids, or partitioning around medoids (PAM) algorithm, is a clustering algorithm reminiscent of the
k-means algorithm. This method attempt to minimize the Hausdorff distance between trajectory labeled to be in a cluster
and a trajectory designated as the center of that cluster. Our experiment will be constructed on different size of dataset,
which are one-day data, one-week data, and one-month data. The hyperparameter tuning procedure will be discussed
next.

A. Hyperparameter tuning

For a specific learning algorithm, hyperparameter tuning is crucial for selecting a set of optimal hyperparameters for
the model. For this work, we choose the random search algorithm [57] for our tuning process. The advantage of random
search algorithm is its gradient-free property. For the random forest model, there are 6 hyperparameters for tuning:

10
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1) Number of estimators (trees) in random forest,

2) Minimum number of samples required to split a node,

3) Minimum number of samples required at each leaf node,

4) Method of selecting samples for training each tree (bootstrap or not),

5) Number of features to consider at every split,

6) Maximum depth (maximum number of levels in tree).
Using 3 fold cross validation, search across 100 different combinations to define the optimal hyperparameter set. Using
one-day data as example, the mean absolute percentage error can be reduced from 17.06% to 14.94% with the tuned
hyperparameter set.

B. Results and discussion

The proportion of training set and testing set is 8:2. Three different size of data are examined, which are one day
data (May 26™, 523 flights), one week data (May 24" to May 30, 2917 flights), and one month data (May 1°! to May
30", 8760 flights). Because the computational time is acceptable for all cases, we did not perform evaluations from
that aspect in this work. Root mean square error (RMSE) and mean absolute percentage error (MAPE) is used as the
evaluation metrics in this experiment. For one day data, the best performance for random forest regression on this
problem is 13.77% MAPE with both holding pattern and clustering features added. Using the one-month dataset, the
accuracy can reach 0.07% while only add the holding pattern feature on the simplest case. For our results, we are
convinced that holding pattern detection and clustering algorithm are beneficial for increasing the prediction accuracy in
most cases.

Table 2 Results for arrival transit time prediction experiment.

One day data One week data One month data
RMSE (sec) MAPE % RMSE (sec) MAPE % RMSE (sec) MAPE %
5 variables 449.95 19.19 57.32 0.83 13.59 0.14
5 variables + 1 (HP) 343.50 14.61 40.06 0.8 8.51 0.07
5 variables + 1 (Clustering feature) 357.98 15.17 31.63 0.81 18.57 0.14
5 variables + 2 (HP & Clustering) 316.99 13.77 44.19 0.77 991 0.10

VI. Conclusion

This paper presents a series of statistical analysis and an arrival transit time prediction for the aircraft arrival flow
investigation inside HKIA TMA. Based on the one month ADS-B data, to better extract relevant features from the
raw flight trajectory data, we developed an automatic holding pattern detection algorithm and prove its usage in both
statistical analysis and arrival transit time prediction. Detailed statistical analysis reveals the apparent temporal patterns
for arrival flights. Furthermore, the arrival transit time mapping on spatial trajectory visualization also shows the
propagation characteristic inside the terminal control area. When unexpected airspace restriction or severe local weather
condition happens, the highest arrival delays might appear few hours later. Not only can this crucial information be
useful for air traffic controllers, it can also provide inspiration and direction for the future TMA air traffic modeling
research.

Arrival transit time prediction using random forest regression was also performed. The accuracy of the prediction
model increases with the size of the data. The relatively large error retaining to one-day data can be attributed to the
limited data, as compared to one-week data and one-month data. Any incidental variations in air traffic operators
can be better absorbed in a longer time window. Note, however, that data included in this analysis are still limited.
Further investigations with more data need to be performed for a more solid and robust result. The future plan from this
preliminary work is a two-way investigation. From the statistical analysis aspect, a larger dataset is expected to construct
a seasonal pattern recognition study. Also, discovering effective ways to convert significant information for air traffic
controllers. On the other hand, how to increase the prediction’s accuracy of arrival transit time with a smaller dataset
is also worth focusing on. More algorithms should be tested, and detailed weather data will be involved for a more
computationally rigorous study of how weather conditions affect the air traffic at the terminal control area.
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