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Abstract—Many factors are contributing to raising challenges in
Air Traffic Management operations, from increasingly adverse
weather conditions to emerging usages of airspace. In this
context, efficiently managing limited airspace capacity while
accounting for traffic demand uncertainty has become criti-
cal. Dynamic Airspace Configuration provides a framework to
maximize efficiency by adapting airspace capacity to varying
spatial and temporal demand patterns, thereby minimizing
traffic overflow and reducing regulations and delays. Given a
pre-determined set of configurations, we aim to determine an
optimal and robust configuration plan that effectively absorbs
air traffic under demand uncertainty. We propose two solution
approaches: an integer linear programming model and a more
computationally efficient graph-based formulation using a con-
strained shortest path algorithm. We extend the formulations to
account for uncertainty and provide optimal configuration plans
that are robust against possible traffic demand increase, with
different levels of protection. We evaluate our robust approach
to dynamic airspace configuration on Madrid ACC, considering
available configurations and traffic data from August 2024.
Our computational study explores trade-offs between minimiz-
ing traffic overflow and robustness, demonstrating that even
moderate levels of conservatism can significantly impact traffic
excess and, consequently, delays. These findings underscore the
importance of computing optimal robust solutions.

Keywords—dynamic airspace configuration; robust optimiza-
tion; integer programming; constrained shortest path.

I. INTRODUCTION

Air traffic controllers (ATCO) face increasing challenges
due to the growing complexity of airspace management,
driven by rising air traffic demand and adverse weather
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conditions. In the near future, the integration of new airspace
users into the Air Traffic Management system may further
exacerbate these challenges.

With the goal of accommodating the air traffic demand as
much as possible and reducing air traffic delays, the SESAR
Concept of Operations suggests Dynamic Airspace Configu-
ration (DAC) as the primary method to address imbalances
between demand and capacity. DAC is also seen as a crucial
element for the future structure of European airspace, as out-
lined in the Airspace Architecture Study [1]. DAC relies on an
airspace model based on the concept of sectors - i.e., the units
(portions) of the airspace managed by one or more ATCO.
Each sector has an associated capacity, which indicates the
volume of air traffic that can be safely managed within it. The
union of a subset of non-overlapping sectors that covers the
whole considered airspace is an airspace configuration. DAC
allows optimizing airspace capacity provision by adopting
different airspace configurations over time (resulting in a
sequence of configurations, or configuration plan) to adapt
to traffic variations and prevent uneven workloads.

In this paper, we present an Integer Linear Programming
(ILP) model for DAC, that provides a configuration plan
that minimizes the total traffic excess taking into account the
necessity of avoiding frequent configuration changes, that can
put a strain on ATCO workload, and guaranteeing a certain
level of compatibility between consecutive configurations.
This formulation, however, does not account for uncertainty
on the traffic demand and capacity that can arise due to
unforeseen events. To include this uncertainty component,
we design a Γ-robust formulation for DAC, in which the
degree of conservatism is managed by a parameter Γ, which
provides an upper bound on the number of excess coefficients
allowed to take larger values than their nominal one. Since
this formulation relies heavily on the ability to provide the
optimal configuration plan in short computational times, as an
alternative to solving the ILP model we propose a graph-based
representation of the problem, that incorporates the temporal



evolution of configurations and the related constraints, and
solve a constrained shortest path problem on the associated
directed graph, providing a configuration plan minimizing the
traffic excess. We evaluate the proposed robust optimization
approach to dynamic airspace configuration on Madrid Area
Control Center (ACC), considering available configurations
and traffic data from August 2024. Our computational study
explores trade-offs between minimizing the traffic overflow
and robustness, demonstrating that even moderate levels of
conservatism can significantly impact traffic excess and, con-
sequently, delays. These findings underscore the importance
of computing optimal robust solutions.

The paper is structured as follows: Section II provides a
literature review on dynamic airspace configuration and sec-
torization. The mathematical model is presented in Section III,
while the corresponding graph-based approach is described
in Section IV. Section V describes our case study on Madrid
ACC, and Section VI presents the computational results and
their analysis and discussion. Section VII concludes this study
and outlines potential future works.

II. LITERATURE REVIEW

Dynamically rearranging airspace during a given time
frame offers many advantages, such as more efficient capacity
management and a balanced overload distribution. Hence,
the focus of the study is not on the configuration itself, but
rather on the sequence of configurations (configuration plan)
to be deployed. Literature in this field is extensive and rich,
and, among the variety of contributions, two main lines of
work can be outlined: Dynamic Airspace Sectorization (DAS)
and Dynamic Airspace Configuration (DAC). Although this
specific terminology is generally agreed upon, the definitions
of DAS and DAC can sometimes overlap; therefore, we
begin by clarifying the definitions that will be used from
now on, following those provided in [2]. In this light, DAS
relies on the concept of an unstructured airspace that can be
freely partitioned to form different configurations, whereas in
DAC predefined portions of the airspace (airspace blocks) are
periodically rearranged into sectors to obtain the configuration
plan. For instance, one of the theoretical tools used in DAS are
Voronoi diagrams (see, e.g., [2, 3]), in which a set of points
(seeds) is used to partition the plane into regions containing all
the points with the same closest seed. As for DAC approaches,
we define a further division into two categories, based on
the permitted airspace blocks combinations: the first category
takes into account only information on the airspace blocks
and, therefore, allows for a higher degree of freedom in their
aggregation with respect to the second category, in which only
predefined sectors and/or configurations can be considered.

Many techniques have been proposed to tackle both cat-
egories; as for the first, in [4] and [5] DAC is modeled
as a graph partitioning problem on a graph whose nodes
correspond to airspace blocks and arcs represent the adjacency
relation between blocks. Airspace blocks are divided into two
groups: non-shareable blocks (that can be chosen as the center
of sectors) and shareable blocks. In both cases, the objec-
tive function consists of several terms, taking into account
workload imbalances between sectors and traffic complexity,

and the problem is solved via genetic algorithms. Reference
[6] considers the same graph, on which graph partitioning
is performed to produce a time-dependent set of available
configurations. An ILP model provides the configuration plan
by choosing one configuration for each time period, with the
goal of minimizing the costs associated to workload and its
balance, and to the change rate between configurations. Due
to its exponential number of variables, the model is solved
with column generation and a Branch and Price algorithm. In
[7], a recursive greedy algorithm is proposed; in every time
period, it considers the current airspace sectors and combines
the under-utilized ones in light of a measure on the predicted
traffic excess, where traffic is given by the maximum aircraft
count in a 15-minute time interval. As a bridge between
the two categories, reference [8] explores the possibility of
combining airspace blocks into both commonly used sectors
and new sectors with admissible shapes.

Regarding the second category, reference [9] presents an
ILP model, in which each airspace block is assigned to a
sector from a predefined set, with constraints ensuring that
no block is left unassigned or assigned to multiple sectors
and that the upper limit on the number of configured sectors
is not exceeded. In [10], the goal of providing a configu-
ration plan that minimizes workload cost (considering the
excess workload in each sector and each time period, where
workload is given by the peak traffic count in every period)
is met by employing three algorithms: a myopic heuristic,
an exact dynamic programming algorithm, and a rollout
approximate dynamic programming algorithm. Among the
tools that have been put into play, we also mention machine
learning techniques: in [11], for instance, Neural Networks are
used to evaluate workload probabilities, and airspace blocks
are combined through a Branch and Bound algorithm. As
for generating the configuration plan, the current configu-
ration is evaluated at each time step and reconfiguration is
triggered whenever workload is too close to given upper or
lower bounds. A recent study [12] contributes an ILP model
that generates optimal configuration plans minimizing traffic
overload, with validation performed on historical data from
Madrid ACC under various time discretizations and traffic
increment scenarios.

III. MATHEMATICAL MODEL

Generally speaking, our objective is to compute a config-
uration plan, i.e., a sequence of airspace configurations over
time that allows absorbing the expected air traffic demand as
much as possible, or in other words, that allows reducing air
traffic delays. Specifically, we suppose that a family of con-
figurations C from which to choose the active (implemented)
one at each time interval is given, together with the air traffic
demand and the capacity for each sector of the airspace during
a time horizon [0, T ]. The time horizon is discretized into n
time periods, and the related set is denoted by T = 1 . . . n.

Because each configuration c ∈ C corresponds to a subset
of sectors, the excess of air traffic demand of configuration c
at any time period t ∈ T – here denoted ec(t) – can be easily



computed as:

ec(t) =
∑
s∈c

max{ds(t)− cs(t); 0}, (1)

where ds(t) and cs(t) are the demand and capacity of sector
s at time period t respectively. We remark that this excess
demand quantification does not take its spatial and temporal
distribution into account, which is critical for understanding
operational impacts. Indeed, concentrated overloads increase
the need for regulations, leading to larger delays. To mitigate
these effects, excess demand parameters can be adjusted, e.g.,
by using superlinear coefficients to take distribution effects
into account.

A. An Integer Linear Programming formulation

We can formulate the DAC problem as an integer program,
using, for each c ∈ C and t ∈ T , the following decision
variables:

xc
t =

{
1, if configuration c is implemented at time period t,
0, otherwise.

To model the fact that some configurations cannot be operated
at specific time periods, we denote by Ct ⊆ C the set of
feasible configurations at time t, and limit the definition of
decision variables to these subsets.

The objective is to minimize the total excess of demand,
which can be considered as the delay that needs to be assigned
to meet the capacity requirements in each (operating) sector:

min
∑
t∈T

∑
c∈Ct

ec(t) · xc
t . (2)

Decision variables are subject to the following conditions:∑
c∈Ct

xc
t = 1 ∀ t ∈ T (3)

xc
t −

∑
c′∈Ct+1

c

xc′

t+1 ≤ 0 ∀ t ∈ T , c ∈ Ct (4)

xc
t − xc

t−1 ≤ xc
t+δ ∀ t ∈ T , c ∈ Ct, δ = 1, . . . , tp − 1

(5)
xc
t ∈ {0, 1} ∀ t ∈ T , c ∈ Ct. (6)

Constraints (3) impose that exactly one feasible configuration
is active (implemented) at each time period. Constraints (4)
and (5) impose that the vector of decision variables belongs to
the set of feasible “dynamics”, i.e., that the transition between
configurations over time can be actually implemented by
ACCs. When the configuration is modified, only smooth
transitions are allowed. This aspect is modelled by constraints
(4), where Ct+1

c ⊆ Ct+1 is the set of configurations that
can be implemented in t + 1 if c is implemented in t. To
overcome the challenge of frequent configuration changes in
response to even small demand fluctuations, constraints (5)
ensure that any implemented configuration remains active for
at least tp consecutive time periods, that will be referred to as
permanence interval. Finally, constraints (6) state the decision
variables’ domain.

B. Robust configuration plans

Due to several unforeseen events, traffic demand and sector
capacities are subject to uncertainty. In particular, we consider
that ec(t) can take any value between a minimum ec(t) and
a maximum ec(t), and seek for a robust configuration plan,
i.e., the plan that minimizes the total excess of demand in
the worst case. Formally, denoting by x, e, e and e the
vectors of the corresponding elements, we want to determine
a configuration plan that satisfies constraints (3) to (6), and
optimizes the following objective function:

min
x

max
e≤e≤e

∑
t∈T

∑
c∈Ct

ec(t) · xc
t = min

x

∑
t∈T

∑
c∈Ct

ec(t) · xc
t (7)

The solution tends to be over-conservative, since it is un-
likely that all the excess coefficients take their maximum
value for every sector and time period. We thus resort to
the approach proposed by [13] to control the degree of
conservatism. In particular, we define a parameter Γ that
specifies the maximum number of coefficients that can deviate
from their nominal values in our uncertainty set. Denoting by
N the set of all the indices of the excess coefficients, i.e.,
N = {(c, t) | t ∈ T , c ∈ Ct}, the objective function becomes:

min
∑
t∈T

∑
c∈Ct

ec(t) · xc
t + max

S⊆N,|S|≤Γ

∑
(c,t)∈S

[ec(t)− ec(t)] · xc
t

(8)

The Γ-robust DAC problem corresponds to finding the
configuration plan that optimizes (8) under constraints (3)
to (6), i.e., the configuration plan that minimizes the worst-
case total excess of demand assuming that up to Γ excess
coefficients are allowed to deviate from their nominal value.
The parameter Γ represents the degree of conservatism in
the robust solution: a higher Γ corresponds to a greater
level of protection in the configuration plan against potential
traffic deviations from the nominal value. By varying Γ,
the approach enables systematic trade-off analysis between
nominal performance and robustness against demand uncer-
tainty, from the more optimistic scenario, where all excess
coefficients take their minimum value (Γ = 0), to the more
pessimistic one, where all coefficients are allowed to change
(Γ = |N |) thus resorting to (7). We observe that, because
of constraint (3), the total excess of any solution to the
DAC problem is determined by |T | excess coefficients. All
the scenarios with Γ ≥ |T | are therefore equivalent from a
robustness perspective, as, although more than |T | coefficients
are allowed to change, only |T | of them influence the value of
the objective function. As a consequence, a |T |-robust optimal
solution is also a Γ-robust optimal solution for every Γ ≥ |T |,
and the trade-off analysis can be restricted to 0 ≤ Γ ≤ |T |.

C. Solving the Γ-robust formulation

The formulation for the Γ-robust DAC problem presented
above is not suitable for direct implementation with off-the-
shelf mathematical programming solvers, due to its objec-
tive function. However, reference [13] provides a convenient
solution procedure based on addressing a limited number
of standard Integer Linear Programming (ILP) formulations.
This framework can be applied to our problem, giving rise to



Algorithm 1: Optimal Γ-robust configuration plan
Input: Γ, N , and Ct, Ctc, ec(t), ec(t), ∀ (c, t) ∈ N
Output: the optimal Γ-robust configuration plan x∗

Sort N by decreasing ec(t)− ec(t) and let N [l]
denote the element of N in position l;

Initialize G∗ ← +∞ and L← ∅ ;
for l = 1 . . . |N |+ 1 do

if l ≤ |N | then
Let dl = ec(t)− ec(t) where (c, t) = N [l];

else
Let dl = 0;

if l > 1 and dl = dl−1 then
nop;

else
Let x̄ be the solution of the following ILP

model:

G = min
∑

(c,t)∈L

[ec(t)− dl] · xc
t +

∑
(c,t)∈N\L

ec(t) · xc
t

(9)
s.t. (3) to (6)

if G∗ > Γ · dl +G then
Update x∗ ← x̄, G∗ ← Γ · dl +G;

if l ≤ |N | then
L← L ∪ {N [l]};

Algorithm 1. In particular, we remark that we need to solve up
to |N |+ 1 ILP models. Each ILP model optimizes Equation
(9) (in Algorithm 1) under constraints (3) to (6), and it is
equivalent to solving a DAC problem with suitable excess
coefficients. In fact, Equation (9) corresponds to objective
function (2) after replacing the excess coefficients ec(t) by
the maximum excess ec(t) reduced by dl for a selected subset
L of configuration-time pairs (both L and dl depend on the
iteration), and by the minimum excess ec(t) for the remaining
pairs. The subsets L are obtained by sorting the configuration-
time pairs by decreasing difference between the maximum
and the minimum excess, starting from the pair having the
largest difference, and by adding, at each iteration, the next
pair in the defined order. We remark that, because of this
order, the excess coefficient assigned to pairs in L is greater
than the minimum one.

IV. GRAPH-BASED APPROACH

The ILP formulation for DAC presented in Section III
leads to a computationally challenging problem due to the
combination of configuration transition constraints and min-
imum duration requirements. Moreover, the airspace con-
figuration process requires the analysis of different trade-
offs between optimistic nominal performance and degree of
conservatism against demand uncertainty. To this end, the
Γ-robust approach presented in Section III-C calls for the
solution of a relevant number of ILP models; in principle,
one per time period and per feasible configuration. Since the

airspace configuration process has to be performed during the
tactical phase of air traffic management, a computationally
efficient alternative to solving the ILP formulation for DAC by
off-the-shelf mathematical programming solvers is practically
needed. To this end, we propose a graph-based representation
that captures both the temporal evolution of configurations
and the associated constraints. This approach transforms the
integer programming problem into a constrained shortest path
problem on a directed graph.

A. Augmented configuration-transition graph

Let G = (V,A) be a directed graph where:
• V = {(c, t) | t ∈ T , c ∈ Ct} ∪ {(α, 0), (ω, |T |+ 1)} is

the set of nodes representing configuration-time pairs and
artificial source and sink nodes (i.e., nodes (α, 0) and
(ω, |T |+ 1) respectively);

• A = AP ∪AT ∪Aα ∪Aω is the set of arcs comprising
permanence arcs (AP ), transition arcs (AT ) and artificial
arcs (Aα and Aω), representing potential transitions
between configurations over time.

In particular, the set AP of permanence arcs is defined as:

AP =
{
((c, t), (c, t+ 1)) | t ∈ T , c ∈ Ct ∩ Ct+1

}
. (10)

Each permanence arc represents the possibility of keeping
the same configuration active across two consecutive time
periods. The set AT of transition arcs is:

AT =
{
((c, t), (d, t+ 1)) | t ∈ T , c ∈ Ct, d ∈ Ct+1

c \ {c}
}

(11)
representing valid transitions between different configura-
tions. The sets of dummy arcs connect the source and the
sink nodes to other nodes, and are defined as:

Aα =
{
((α, 0), (c, 1)) | c ∈ C1

}
, (12)

Aω =
{
((c, |T |), (ω, |T |+ 1)) | c ∈ C |T |

}
. (13)

Each arc a ∈ A from node (b, t − 1) to node (c, t) is
assigned a weight w(a) = ec(t), i.e., the excess of air traffic
demand associated to the “tail” configuration c at time t, as
defined by (1). Notice that w(a) = 0 if a ∈ Aω .

It is easy to see that, if we neglect the permanence
constraints (5), the DAC problem can be solved by finding
a shortest path from (α, 0) to (ω, |T | + 1) according to the
metric w. Similarly, we can solve a shortest path problem on
G to obtain the optimal solution of the ILP model at each
iteration l of Algorithm 1 by setting:

w(a) =

{
ec(t)− dl if (c, t) ∈ L,

ec(t) if (c, t) ∈ N \ L.
(14)

For this purpose, efficient procedures, such as, e.g., Dijkstra’s
algorithm [14], are available.

To enforce permanence constraints in the configuration dy-
namics, we augment the graph’s state space with a remaining
duration counter associated to each node v = (c, t) ∈ V . Each
state in the search algorithm is thus represented as a tuple:

s = (c, t, τ)



where c is the configuration at time t, and τ denotes the
remaining number of time periods that must elapse before
allowing a transition to a different configuration. The state s
evolves to a new state s′ when an arc a = ((c, t), (c′, t+ 1))
is crossed. The new state will be:

s′ = (c′, t+ 1, τ ′)

where the number of remaining time periods τ ′ depends on
the type of the arc a used to reach (c′, t+ 1), namely:

τ ′ =

{
max{0, τ − 1} if c = c′, i.e., a ∈ AP ,

tp − 1 if c ̸= c′, i.e., a ∈ AT ∪Aα ∪Aω.

Descriptively, the number of remaining time periods required
to satisfy the permanence constraints is reset to tp − 1 each
time a transition to a new configuration occurs, and decreases
by one, reaching a minimum of 0, each time the same active
configuration is maintained. A configuration change is permit-
ted when τ = 0, indicating that the permanence constraints
are satisfied. The augmented configuration-transition graph
defined above can be conveniently exploited to design a label
setting algorithm that solves DAC as a shortest path problem
while guaranteeing that permanence constraints are met.

B. Permanence-Constrained Shortest Path Algorithm

Our permanence-constrained shortest path algorithm ex-
tends Dijkstra’s algorithm [14] to manage airspace configura-
tion transitions while enforcing minimum permanence times.
The algorithm operates on the configuration-transition graph
G defined in Section IV-A, where edge weights encode
excess demand costs. Moreover, its key innovation lies in
the integration of a duration-aware state space with efficient
First In First Out (FIFO) queue management to ensure both
optimality and constraint satisfaction. Algorithm 2 proceeds
as follows:

1) Initialization: Create a FIFO queue Q with the source
state (α, 0, 0), a distance map ∆ tracking minimum path
costs, and path map Π recording node sequences;

2) State Expansion:
• Extract the state s = (c, t, τ) from Q;
• Terminate if (c, t) matches target (ω, |T |+ 1);
• For each arc (c′, t + 1) stemming from node v =

(c, t), create a new state s = (c′, t + 1, τ ′), where
τ ′ is determined by the evolution rule described in
Section IV-A;

3) Cost Update: For each expanded state s′, update ∆(s′)
and Π(s′) and queue s′ into Q, if a cheaper path is
found.

The correctness of Algorithm 2 is guaranteed by the
evolution rule that prevents the exploration of unfeasible
states related to permanence constraints violation or invalid
transition. We observe that the configuration-transition graph
is, by construction, acyclic, therefore each arc is visited at
most once per value of τ . Due to the fact that the graph
is also layered, FIFO queuing implies a topological order
visit of the graph nodes, which guarantees that the final state
for node ω reports an optimal path, with no need to deque
minimal distance states, differently from standard Dijkstra

Algorithm 2: Permanence-Constrained Shortest Path
Input: Graph G = (V,A)
Output: Optimal path P ∗ or ∅
Initialize FIFO queue Q← {(α, 0, 0)};
Initialize distance map ∆(α, 0, 0)← 0;
Initialize path map Π(α, 0, 0)← [(α, 0)];
repeat

Extract state s = (c, t, τ) from Q
if (c, t) = (ω, |T |+ 1) then

return P ∗ ← Π(s);

foreach arc a = ((c, t), (c′, t′)) ∈ A do
if a ∈ AT and τ > 0 then

continue;
else

τ ′ ←

{
max{0, τ − 1} if a ∈ AP

tp − 1 if a ∈ AT
;

s′ ← (c′, t′, τ ′);
γ ← ∆(s) + w(a);
if γ < ∆(s′) then

∆(s′)← γ;
Π(s′)← Π(s)⊕ (c′, t′);
Q← Q ∪ {s′};

until Q is empty;
return ∅

algorithm. As a consequence, Algorithm 2 is correct and has
time complexity O(|A| · tp).

V. CASE STUDY

In this section, we will introduce our case study at Madrid
Area Control Center (ACC).

A. Data description

This study relies primarily on two essential data sources:
flight trajectory data and airspace sector information. The
flight trajectory data consists of Automatic Dependent
Surveillance–Broadcast (ADS-B) data collected through the
OpenSky Network [15], encompassing aircraft move-
ments over Madrid ACC during August 2024. The dataset
comprises 105,854 discrete flight trajectories, and our analysis
focuses specifically on aircraft operating between flight levels
245 and 550, representing the upper airspace where most
commercial traffic operates.

Fig. 1 demonstrates the complex interplay of flight trajec-
tories across the Madrid ACC’s controlled airspace, where the
black polygon represents its official boundaries. The density
distribution of trajectories, represented by red lines, indicates
significant traffic convergence along northeastern corridors
and coastal approaches.

The airspace sector analysis in this study draws from So-
lution 44 [16], developed by the Centro de Referencia I+D+i
ATM (CRIDA). The airspace structure consists of 281 basic
volumes that are combined to form 119 elementary sectors.
These elementary sectors can be further merged into 969
collapsed sectors, which serve as the fundamental components



Figure 1: Flight trajectory visualization for August 15, 2024;
the black polygon represents the official boundaries of Madrid
ACC’s controlled airspace.

of 285 distinct airspace configurations. Throughout this study,
we will refer to the collapsed sectors simply as “sectors”, as
they represent the operational building blocks from which
the set of airspace configurations is constructed. The hourly
capacity for each sector is also provided in CRIDA Solution
44. The capacity defines the maximum number of entries in
a one-hour time interval.

B. Data preprocessing
1) Traffic demand: For each flight, we mapped its tra-

jectory pattern to the corresponding airspace sectors using
predefined sector-flow pattern relationships. We processed the
data at five-minute intervals, examining traffic demand for
the upcoming hour at each interval (e.g., looking ahead from
10:00 to 11:00, then from 10:05 to 11:05, etc.). At each
interval, we counted the number of flights projected to enter
each sector within the next hour. The preprocessing covered
all flights operating between August 1 and August 31, 2024,
producing rolling one-hour entry demand measurements at
five-minute steps that serve as the foundation for our subse-
quent analysis.

2) Valid configuration set: In the DAC formulation (ob-
jective function (2), constraints (3) to (6)) and its robust
counterpart – as well as in the graph representation of the
problem – we used sets Ct and Ctc to denote the set of
(valid) configurations available at time period t and the set
of configurations that can be reached from configuration c
at time period t, respectively. The former set allows us to
identify and use only the configurations that are consistent
with the rostering of ATCO, while the latter models feasible
configuration transitions.

Using the set of 285 configurations, we populate sets Ct
and Ctc according to the following rules, which mirror the
operational needs that arise in practice. For Ct, we establish
time-dependent constraints on the number of sectors in valid
configurations. To this end, let S(c) denote the set of sectors
that are active in configuration c, Ct is defined as follows:

Ct = {c ∈ C | |S(c)| ≤ 7} from 6:00 to 7:00
and from 22:00 to 24:00

Ct = C otherwise

This filter imposes a maximum limit of 7 sectors during
early morning (06:00-07:00) and late night (22:00-24:00)

periods, reflecting the reduced traffic demand during these
hours. During peak hours (07:00-22:00), no restrictions on the
number of sectors are applied, allowing more flexible airspace
management based on actual traffic demand.

As for the configuration transitions, given two arbitrary
configurations ci, cj ∈ C, a transition from ci to cj is valid if
either of the following conditions are met:

1) |S(ci)| ≤ 4 and |S(cj)| ≤ 4
2) |S(ci) ∩ S(cj)| ≥ 0.5 · |S(ci)|

and abs (|S(ci)| − |S(cj)|) ≤ 3

The transition rule incorporates two key operational con-
straints: condition 1 states that configurations with 4 or fewer
sectors can transition freely among themselves, reflecting
greater flexibility in managing smaller configurations. Con-
dition 2 applies to larger configurations. A transition between
two configurations is feasible if they share at least 50% of
the sectors, promoting operational continuity, and limiting the
difference in the number of active sectors between the two
configurations to at most 3 sectors, thus preventing abrupt
changes in staffing requirements. These constraints are de-
signed to match real operational scenarios while maintaining
efficient airspace management. In light of this definition,
given configuration c active at time t, Ct+1

c can be defined
as follows:

Ct+1
c = {c′ ∈ Ct+1 | transition from c to c′ is valid}. (15)

C. Experiment Setup

We conducted our robust optimization experiments using
historical air traffic data from August 2024, incorporating
the airspace specifications defined in Solution 44. Our com-
prehensive analysis covered the entire month to evaluate the
framework performance under various operational conditions.
Additionally, we performed detailed case studies on three
days identified by CRIDA (August 3rd, 17th and 24th) when
extensive regulations were implemented, providing deeper
insights into the framework’s effectiveness during periods of
heightened operational complexity.

All computational experiments were performed on a work-
station equipped with an AMD Ryzen Threadripper 3990X
64-Core Processor operating at 2.9 GHz base frequency
(4.3 GHz boost) with 256 GB DDR4-3200 RAM. The im-
plementation framework was developed in Python, utilizing
NetworkX [17] for efficient graph modeling and represen-
tation of the temporal configuration network structure.

Our analysis covered the operational period from 6:00 to
24:00, discretized into 5-minute intervals as described in
Section V-B1, resulting in 216 time steps. For robustness
considerations, we incorporated uncertainty in traffic demand
by setting a threshold of 20% to account for potential de-
mand increases in each sector within the configuration. This
threshold was chosen based on historical traffic variation
patterns and operational requirements for maintaining safe
buffer capacities. Before discussing the results in details, we
here provide a brief analysis on the impact of the conditions
on valid configuration sets. We recall that the proposed
criteria are a proxy of (sometimes implicit) criteria and
rules underpinning the configuration process. Indeed, there



might be many factors that affect the airspace configurations
decision process. The temporal graph structure is determined
by the combination of available configurations (285) and time
intervals. Before applying operational constraints, the graph
consisted of 61,562 nodes (including artificial source and sink
nodes, α and ω, respectively) and approximately 17.46 mil-
lion arcs representing potential configuration transitions. After
implementing the valid configuration constraints defined in
Section V-B2, we achieved a significant dimension reduction:
the number of nodes decreased by 4.2% and edges by 94.1%,
leaving 1,026,192 valid transitions in the final graph structure.
Therefore, these conditions not only enhance the realism of
the proposed model but also offer a significant advantage by
reducing the graph size, which in turn improves computational
efficiency.

VI. RESULTS AND DISCUSSION

In this section, we present our results and analysis. Before
delving into the details, we note that the computational
performance of our framework demonstrates its viability
for tactical-phase operations. Table I summarizes the key
performance metrics of our framework, including average
computational times and their variability. As shown in Table I,

TABLE I. Computational Performance Metrics.

Performance Metric Value Unit
Average instance generation time 11.65 seconds
Average solving time 8.47 seconds
Average total computational time 20.12 seconds
Standard deviation for computational time 4.91 seconds
Configuration plan horizon 18 hours

the framework’s computational process consists of two main
phases: instance generation (11.65 seconds) and solving (8.47
seconds), resulting in an average total computational time
of 20.12 seconds. With a more fine-tuned implementation,
instance generation would be required only during the first
iteration and could be skipped—with minimal overhead—in
all subsequent ones, thereby reducing the total computational
time to essentially the solution time. The standard deviation
of 4.91 seconds indicates that most planning instances fall
within a reasonable and predictable time frame, making the
approach suitable for its intended purpose. For the Γ-robust
case, the computational time will scale with the size of
unique deviations considered. These results, that could be
further improved using a performance-oriented programming
language like C, confirm that our framework can efficiently
process and generate nominal solutions in a time frame
suitable for operational use. Finally, this approach clearly
outperforms the mathematical model, which requires minute-
scale computational time for each iteration of the FOR loop
in Algorithm 1.

A. Trade-off analysis in the Γ-robust framework

The analysis presented in this section investigates the trade-
off between efficiency and robustness of the configuration
plans provided by the Γ-robust optimization framework. To
this end, we focus on three selected days in the dataset,
namely, August 3rd, 17th and 24th, which are characterized by

a relevant operational complexity. For these three cases, Fig. 2
displays the value of the worst-case total excess, which is the
Robust Cost minimized by Algorithm 1. We recall that the
robust cost represents the optimal daily demand excess when
accounting for potential demand fluctuations at protection
level Γ. It corresponds to the cost of the optimal Γ-robust
configuration plan in the worst-case traffic-demand realization
among the ones where up to Γ excess parameters deviate from
the nominal value. This means that any other configuration
plan would perform worse than the robust one in at least one
of the traffic realizations allowed by the same protection level.

We first observe that, for Γ = 0, representing the optimistic
nominal case where non excess deviates from the minimum
value, the robust cost is between 314 and 2341. Although this
latter value might appear high, it translates to an average of
approximately 11 units of excess entries per hour, taking into
account that the total excess sums up 216 five-minute interval
within a configuration plan. For a configuration consisting of
7 sectors, this means that each sector experiences an excess of
at most 2 aircraft per hour - a remarkably efficient outcome
given the complexity of airspace management especially if
we consider extensive and prolonged congestion phenomena
occurred on August 3rd,which affect our nominal traffic data.

The curves reveal three distinct phases in the system’s
response to increasing protection levels. In a first phase, the
robust cost rapidly increases from the nominal value, meaning
that even for relatively optimistic scenarios that consider low
protection level (Γ ≤ 20), the system, although optimally
configured, may experience a significant increase in the total
excess. With Γ = 10, the cost of the worst-case scenario
increases by 21% in August 3rd, by 35% in August 17thand by
87% in August 24th(in this case, the nominal excess is fairly
small), and by additional 15%, 27% and 59% (respectively)
with Γ = 20. Provided that non-optimal configuration plans
have even more critical worst-case performance, we observe
that implementing the right robust solution is crucial to avoid
huge loss in operational airspace efficiency and, consequently,
very large amount of assigned delays.

In a second phase, for moderate level of conservatism up
to about Γ = 100, the marginal increment of the robust
cost is mitigated to figures between 20% and 5% (August
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Figure 2: Robust cost v.s. Γ, August 3, 17 and 24, 2024



3rd and 17th) or between 45% and 10% (August 24th) per
10-units of Γ. In this phase, by accepting an additional 50%
deterioration in the worst-case performance (from 3181 to
4718), the protection level increases fivefold (from 20 to 100).
On August 17thand 24th, the same improvement in robustness
derives from additional, respectively, 55% and 87% robust
cost.

Finally, the system enters a saturation phase beyond Γ =
100, where the Γ-robust cost converges to the fully robust cost
(which, we recall, is equivalent to Γ = |T |, as observed in
Section III-B). This means that no further protection is needed
to optimally face uncertainty, and even in the more pessimistic
case, where all excess parameters take their maximum value,
the worst-case cost is not going to significantly improve. For
example, on August 3rd, the convergence is reached for Γ =
124, therefore the 124-robust configuration plan is able to
optimally absorb any level of uncertainty in traffic demand,
and provides a worst-case cost of 4884 even in the more
pessimistic scenario.

The above observations extend more generally to the Γ-
robust costs computed for the entire August 2024, as illus-
trated in Fig. 3. More specifically, Fig. 3 reports the probabil-
ity density functions (PDF) of the robust costs for different
values of Γ ∈ {0, 10, 20, 50, 100, 216}. Examining the PDF,
the robust cost exhibits greater variance as Γ increases. Most
noticeable variations happens for Γ ≤ 20. It is also evident
that Γ = 100 provides almost full protection (because the
curve for Γ = 100 substantially overlaps with Γ = 216 curve),
and that Γ = 50 provides good protection.

B. Simulation of Γ-robust configurations plans

From an operational perspective, the proposed trade-off
analysis helps airspace managers understand the efficiency
implications of varying levels of preparedness for demand
uncertainty. Implementing a configuration with a low protec-
tion level tends to perform better in nominal or near-nominal
scenarios. However, the risk of very poor performance at
unprotected uncertainty levels is significant, with potentially
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severe delays. On the other hand, more robust optimal config-
uration plans provide some performance guarantees, even in
pessimistic scenarios with high levels of uncertainty, although
their performance may deteriorate under more optimistic
uncertainty realizations. For example, Fig. 2 suggests the
airspace managers the importance of considering a protection
level of at least Γ = 20, as the worst-case performance of less
conservative optimal solutions (e.g., Γ = 10) quickly deteri-
orates already with increasing uncertainty levels. However,
optimal Γ-robust configuration plans are designed to provide
the best worst-case performance under level of protection Γ.
In addition to compare the cost-robustness trade-off, further
insights into the performance of specific Γ-robust solutions in
different uncertainty scenarios may offer additional guidance
to airspace managers.

With reference to the case-study of August 3rd, Fig. 4
illustrates the performance of the Γ-robust configuration plans
output by Algorithm 1, one for each conservatism level Γ. The
line chart plots the total excess realized by the associated Γ-
robust plan in three different uncertainty scenarios: (i) the
nominal scenario where all excess cost take the minimum
value, (ii) the more pessimistic scenario where maximum
excess is considered and (iii) the worst-case scenario associ-
ated to Γ (in this case, the total excess is the robust cost).
We remark that the excess in nominal (respectively more
pessimistic) scenario is increasing (respectively decreasing)
with Γ, whereas the robust cost goes from the nominal
minimum excess (Γ = 0) to the fully robust cost (Γ = |T |
according to trend analysed in Section VI-A). In particular,
each Γ-robust plan may realize a larger excess than the Γ-
robust cost if the realized traffic demand affects more than Γ
excess parameters.

In order to have further insight into the performance of a
configuration plan Π∗(Γ) in intermediate scenarios, we pro-
pose a Monte Carlo simulation approach. For each repetition:
we uniformly select a subset of the 216 configuration-time
pairs of Π∗(Γ); we assign the maximum excess to the selected
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Figure 5: The cumulative distribution function based on
Monte Carlo Simulation for Γ = 0, 20, and 216 (|T |).

pairs and the nominal one to the remaining ones; we compute
the total excess of Π∗(Γ). Figure 5 presents the cumulative
distribution functions (CDF) of the total daily excess demand

First, we observe that no single plan dominates the others
across various levels of total daily excess demand. For lower
values of total daily excess demand (below approximately
3500, corresponding to a cumulative probability of 0.37),
the nominal solution (Γ = 0) performs slightly better than
the 20-robust plan, which, in turn, is more efficient than
the fully robust solution (Γ = 216). For larger values of
total daily excess demand (above 3500), this dominance
relationship reverses, making the fully robust solution the
best choice. Furthermore, the analysis reinforces Γ = 20 as
a well-balanced trade-off. Its performance closely matches
the nominal scenario for lower total daily excess demand
values while providing better protection against higher excess
demand values, as shown by how its CDF curve falls between
the nominal and fully robust solutions.

C. Configurations utilization pattern

The scatter plot (Fig. 6) presents a comprehensive analysis
of configuration utilization patterns derived from our opti-
mization results with August 2024 data. Each point represents
a unique configuration, with the x-axis indicating total occur-
rences and the y-axis showing average duration in minutes.
The occurrences of each configuration are counted based
on consecutive assignments in the solution sequence - for
example, in a sequence A-A-B-B-A, configuration A would
register 2 occurrences (one for each continuous segment)
and B would register 1 occurrence. The plot includes results
across different robustness parameters (Γ), ranging from 0
(nominal solution) to 216 (|T |), allowing us to examine how
uncertainty protection affects utilization patterns. Three key
configurations emerge in our analysis: CSS11G (11 sectors),
CSS7Z1 (7 sectors), and CNS7T2 (7 sectors), each of which
demonstrates distinct utilization characteristics that provide
information on the relationship between sector count and
operational deployment.
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In particular, configuration CSS11G demonstrates a strate-
gically relevant pattern in the context of protection-level re-
quirements. At lower protection levels (Γ = 0, 20), it maintains
a baseline presence with around 35 occurrences, while at
higher protection levels (Γ = 100, 216), its usage increases
to approximately 42 occurrences. Throughout all protection
levels, it maintains consistent average durations around 100
minutes. This pattern indicates that CSS11G not only serves
as a stable primary configuration but is preferentially selected
when higher levels of protection against uncertainties are
required. The increased utilization under higher Γ values,
while maintaining consistent duration metrics, suggests that
larger sector configurations can be used to provide enhanced
robustness without compromising operational efficiency.

As for configuration CSS7Z1, a 7-sector configuration, it
shows notably different characteristics, appearing in the low-
occurrence range (0-5) but with the highest average dura-
tion (approximately 345 minutes). Similarly, configuration
CNS7T2 is associated with an average duration of around 250
minutes, but is rarely used. This inverse relationship between
occurrence frequency and duration for the 7-sector configura-
tions suggests they might be strategically deployed for longer,
specialized operations rather than routine assignments. The
pattern remains relatively stable across different values of Γ,
indicating that this sector-specific behavior is inherent to the
configuration rather than an artifact of uncertainty protection.

D. Comparison with the actual scenarios

Based on the actual operational data, we identify three
days with the highest accumulated ATC capacity regulation
delay in August 2024, which are August 3rd, 17th, and
24th. On each of these days, different sectors of the Madrid
ACC experienced regulations throughout the day, indicating a
more complicated operation scenario. Since the current sector
implementation in Madrid ACC is different from Solution 44,
we could not compare the excess demand per sector. Instead,
we extract from the NEST output the number of transitions
(6:00 to 24:00) and compare them.

The comparison between the actual number of transitions
and our simulation results with different values of Γ is
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presented in Fig. 7. The actual transition counts are 22, 24
and 27 on August on August 3rd, 17th and 24th respectively.

It is important to notice that our optimization model shows
varying performance in terms of transition counts compared
to actual operations. Although our model generally achieves
fewer transitions, an interesting trade-off can be observed on
August 3rd, where all six Γ scenarios show higher transition
counts than actual operations. This increased number of tran-
sitions likely results from our algorithm’s primary objective
of minimizing excess demand, suggesting that, in some cases,
more frequent reconfigurations are needed to better manage
airspace capacity and demand.

For the subsequent dates (August 17th and 24th), our model
shows a smaller number of transitions with respect to actual
plans, with the only exception being Γ = 100 for August 24th.

VII. CONCLUDING REMARKS

In this paper, we proposed a robust optimization approach
for dynamic airspace configuration. The focus is on mini-
mizing the total excess traffic demand over a given period
of time – potentially spanning the entire day of operations
– by effectively managing configuration plans. To handle the
complexities of airspace configuration transitions and uncer-
tainties on the traffic demand, our methodology integrates
integer linear programming with a graph-based approach.
More specifically, to factor in operational requirements for
configuration transitions in the computation of the robust con-
figuration plan, we designed and implemented a Permanence-
Constrained Shortest Path algorithm, which is based on the
Dijkstra’s algorithm [14].

We demonstrated the effectiveness of the proposed frame-
work using a case study based on the Madrid ACC, built
with real flight trajectory data and airspace sector information.
More in particular, we showed that it is possible to generate
configuration plans that are robust to demand fluctuations,
thereby reducing excess demand and potential delays, espe-
cially in most congested scenarios.

An analysis on the computational results revealed that the
robust cost exhibits greater variance as Γ increases, requiring
a fine-tuned approach to determine the “right” protection level
specific to the day of operations. Although robust solutions
are not the most efficient in optimistic scenarios (i.e., with low
demand excess), they offer a significant advantage in more

congested situations. From a practical perspective, it may be
preferable to accept some moderate excess demand in low-
congestion cases if it leads to reduced congestion in the most
critical ones, ultimately benefiting both ATCO’s workload and
ATFM delays.

We recall that the results presented in this paper consider a
definition of the excess demand parameters that does not take
concentration into account, which, as observed in Section III,
impacts required air traffic regulations. Further analysis of
the proposed robust configurations plans in terms of possible
spatial and and temporal peaks of the demand overload is
left for further study. Future research may also investigate
how the excess demand parameters or, more in general, the
ILP formulation of DAC may be adjusted to directly consider
concentration effects in the optimization model. However, it
is important to note that the proposed approach remains valid
even when other metrics – e.g., complexity metrics – are used,
provided that value ranges are specified.

Another potential direction for future work is the study and
integration of further refinement of the robustness parameters
and uncertainty set to enhance the model’s adaptability and
performance. Additionally, extending the framework to in-
corporate machine learning techniques for real-time demand
forecasting can aid in further evaluating the model’s practical
capabilities. Overall, this study contributes to the ongoing
efforts to optimize airspace configuration plans and improve
the efficiency and robustness of air traffic operations.
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